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Abstract—Genetic operators represent the alterations ap-
plied to entities within an evolutionary algorithm; they help
create a new generation from an existing one, ensuring genetic
diversity while also preserving the emergent overall strengths
of a population.

In this paper, we investigate different approaches to hyper-
parameter configuration of genetic operators within a linear
genetic programming framework. We analyze the benefits of
adaptively setting operator distributions and rates using hill
climbing. A comparison is drawn between the constant and
adaptive methodologies.

This research is part of our ongoing work on evolutionary
music composition, where we cast the actions of a virtual
composer as instructions on a Turing-complete virtual register
machine. The created music is assessed by statistical similarity
to a given corpus. The frailty to change of our genotype dictates
fine-tuning of the genetic operators to help convergence.

Our results show that adaptive methods only provide a
marginal improvement over constant settings and only in
select cases, such as globally altering operator hyperparameters
without changing the distribution. In other cases, they prove
detrimental to the final grades.

Keywords-genetic operators; linear genetic programming;
evolutionary algorithms; algorithmic music composition

I. INTRODUCTION

Within the life cycle of any evolutionary algorithm, ge-
netic operators [1], [2] are the set of procedures creating
subsequent generations from existing ones. They ensure the
diversity of the population while maintaining an ongoing
stochastic process. By De Jong’s [1] definition, they “deter-
mine the genetic makeup of offspring from the genetic ma-
terial of the parents”. For classical genetic algorithms, three
genetic operators are commonly defined [3]: reproduction,
crossover and mutation (each discussed at length in Section
II). In classical examples, each individual in a generation
is built using exactly one operator. It is possible however
to chain multiple operators to create a single individual,
thus potentially exploring the search space faster. The most
common pairing is crossover with mutation [4], [5] or with
simulated annealing [6].

The problem addressed in the current ongoing project
is that of algorithmic corpus-taught music composition [7],
[8], [9] using linear genetic programming (LGP) [10]. This
ongoing project uses the conceptual separation of genotype
and phenotype to evolve what might be considered to be the

thought process of a virtual music composer instead of the
music itself. We cast the actions of the composer as atomic
instructions performed by a virtual register machine whose
output is the “observable” phenotype: a piece of music. Our
genotype is represented by a genetic string: a byte array
fully representing a state of the virtual machine (VM). The
underlying code is interpreted sequentially, making this a
linear genetic programming problem. The pieces of music
are qualitatively assessed by comparing statistical likeness
to a corpus of real music input in MIDI format.

The current work performs a comparative study on the
adaptive settings of genetic operators. Although online hy-
perparameter optimization has been researched extensively
for genetic algorithms and programs, it has seldom been
attempted in an LGP setting. Our explored hyperparameters
include the distribution of the different operators as well
as operator-specific settings: the number of cut points in
crossover and the number of altered bytes in mutation.

The remainder of this document is structured as follows:
Section II describes the background concepts of genetic
operators used in different types of evolutionary algorithms,
together with a history of adapting their parameters. Sec-
tion III outlines the linear genetic programming problem and
the associated framework, while Section IV describes how
we incorporate adaptive genetic operators into it. Section V
describes our experiments, with the results detailed in Sec-
tion VI. Section VII draws the appropriate conclusions and
presents future possibilities of exploration.

II. BACKGROUND & RELATED WORK

The suggested operator distribution for genetic program-
ming [3], [11] is 8% reproduction, 90% crossover and
2% mutation. Ideal percentages may vary based on data
representation and problem complexity [12] and may even
change during any single run of an algorithm, when elite
units start to emerge [13].

In the following subsections, classical genetic operators
and their adaptability are discussed together with their usage
in (linear) genetic programming environments.

A. Reproduction

Reproduction represents carrying an entity over from one
generation to the next without change, ensuring the “survival



of the fittest”; it mitigates the ever-present probability that
fit individuals may be omitted during the breeding process.

Survivors may be chosen by taking the best units di-
rectly or by randomly selecting them based on their fitness,
using a process such as roulette-wheel selection [14]. As
discussed in our previous research [8], guaranteeing the
survival of the highest-scoring entities in our setting leads
to elitism: the best individuals may be overly vulnerable
to mutation and prohibit other units with better potential
from emerging. Therefore a preferred evolution strategy is
probabilistic survival: selecting survivors based on chance,
where strength only increases the possibility of survival, it
does not guarantee it. This allows vulnerable albeit decent
entities to die out and make way for more stable ones.

Entities may be selected solely based on their fitness
or a combination of fitness and age. Incorporating age
allows older units to have a smaller chance in roulette-
wheel selection, adding a “ticking clock” element to their
forwarding of helpful genes to their offspring.

B. Mutation

Mutation represents random alterations in the genetic
code of an individual, either by reshuffling small segments
of genetic material or by swapping/reorganizing existing
segments. It is used to maintain population diversity and
dissolve stuck positions in local optima.

In linear genetic programming, mutation may alter a
genetic string in various ways: a single randomly chosen
instruction may be changed to a random one, multiple
randomly chosen bytes may be randomized or entire series
of linear code may be moved, shuffled or randomized [10].
The number of mutated or swapped bytes constitutes a new
hyperparameter whose best value may depend on context
and may also change within a run; we label this value nm.

Intuitively, mutating too few segments in a genetic string
may slow down the exploration of the search space. On the
other hand, mutating overly many bytes increases the like-
lihood of distorting or destroying the genetic material that
made the original individual strong enough to be selected.
This could reduce the explorative strength of mutation to a
random search.

Piszcz and Soule [12] analyze the optimum mutation
rate in correlation with the difficulty and complexity of
the presented problem; the latter is based on the size of
the genetic string. Their findings show that more complex
problems narrow the interval of effective mutation rates,
therefore fine-tuning is required.

C. Crossover

Crossover (or recombination) implies combining the ge-
netic information of two selected individuals to produce one
or two offspring, which hopefully combine the strengths of
the parents. In the context of linear genetic programming,
Hu et al. [5] demonstrate that recombination “significantly
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Figure 1. Applying homologous crossover to a pair of genetic strings to
create two offspring. The number of cut points nc is proportional to the
genetic string size; their position is selected randomly.

accelerates the evolutionary search process and particularly
promotes robust phenotypes”.

The genotype is subject to recombination by selecting a
cut point; one of the offspring inherits the information on
one side of this point from the mother, and the rest from the
father.

Classically, crossover only uses one or two cut points.
However, because we use a large amount of simple sequen-
tial data to represent virtual composers’ thought processes,
increasing the number of cut points may help improve the
search process [7]. The cut points count relative to the
genetic string size therefore becomes a new hyperparameter
which may benefit from live adaptation; we label it nc.

In a similar vein, Esquivel [15] proposes multiple
crossovers per couple (MCPC), creating multiple offspring
reusing the same pair of parents. The selection for crossover,
similarly to reproduction, can be deterministic or probabilis-
tic; higher fitness parents have a better chance of producing
more than one offspring.

Other variations of crossover have been proposed for
genetic programming, such as uniform crossover [3] or
randomly selecting the depth separately from the node [16];
the latter allows bias correction from the classical case
where leaves are chosen often. However, these methods both
hinge on the tree-based genotype representation abandoned
in LGP, replaced by a sequential approach.

Crossover in LGP classically involves one or more ran-
domly selected cut points serving as alteration points [17].
These do not necessarily appear in the same place in the two
genetic strings, therefore the swapped code segments often
differ in size. This unconstrained genotype size may lead
to “code bloat”: continuously growing code caused by only
marginally better fitness. A simple solution is homologous
crossover [18]: swapping aligned and equal-sized blocks
from the mother and father genotypes, effectively disallow-
ing code bloat (see Figure 1).

D. Adaptive genetic operators

Munroe [13] highlights the importance of the ratio be-
tween the number of units created using mutation and



crossover; this ratio should decrease during an algorithm’s
run, since increasingly stable units should arise, reducing the
necessity of random impact.

Dynamically altering operator parameters in genetic algo-
rithms has been attempted as far back as the late 1980s [19],
[20], with later research also extending to genetic program-
ming problems [21]. Common operator adaptation methods
include hill climbing [22], [23], [6], differential evolu-
tion [24] and using a second genetic algorithm within the
original for parameter optimization [25]; Kazarlis et al.
refer to the latter strategy as a “microgenetic algorithm
(MGA)” [26].

Parameters which may benefit from adaptive strategies
can be separated into two categories. The distribution of
operators used to construct a new generation constitutes a
global parameter of the algorithm which may be updated per
generation. Adaptivity has been applied to global distribu-
tions [19] as well as the probabilities of crossover [21] and
mutation [27], [28], [29]; better results are achieved in all
cases compared to standard operators. On the other hand,
mutation and crossover use the operator-specific parameters
discussed in Sections II-B and II-C, respectively. We collec-
tively name these parameters operator rates.

Adaptive strategies for operator rates are separated into
two classes. The centralized approach [19], [30], [31] pro-
vides discrete operators applicable throughout a population,
adapted once per generation based on how much overall
fitness improves. Conversely, in the individualized strategy
(also referred to as decentralized or self-adaptive) [28], [20],
[21], the settings are part of each individual and are adapted
and inherited independently.

III. SYSTEM OVERVIEW

This section introduces the linear genetic programming
framework used in our experiments 1. It is built as a holistic
system capable on evolving general data, not necessarily just
music.

We follow widely accepted genetic programming conven-
tions (see Figure 2). We separate the concepts of genotype
(the object of evolution) and phenotype (the object of quality
assessment). The genotype represents a state of the virtual
composer’s brain, therefore the phenotype rendering may be
viewed as the composition process itself. The actions of the
composer are viewed as a sequential series of instructions
interpreted by a Turing-complete virtual machine. The VM
is constructed as a simple 8-bit general-purpose register
machine with a complex instruction set. We define a genetic
string as any condition of the VM; it holds all memory
segments and register values in a fixed-size byte array.

The instruction set and general architecture of the virtual
machine may take on many shapes [9]. The only condition
for viability is the inclusion of output instructions, which

1Project hosted open-source at https://bitbucket.com/csabasulyok/emc
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Figure 2. Our algorithm starts out with a seed of random genetic strings,
interpreting them using a Turing-complete virtual machine and using the
output to construct musical models (phenotypes). Fitness is represented by
similarity to members of a corpus of real music. The grades are used to
select and create a subsequent generation using genetic operators.

act as events firing to the virtual score. The output bytes
are used to construct the musical phenotype: a MIDI-
like representation of a score. This two-stage approach to
rendering the model contrasts previous musical evolutionary
systems in that the structure of the genetic string does not
directly represent that of the phenotype. Decoupling the
genetic program and the resulting score in this way allows
for the emergence of complex structures not possible in
more constrained models. For example, a conditional branch
instruction executed on the VM could cause the repetition
of a single note or section, or perhaps even the entire piece
depending on where it occurs in the program and how far it
jumps the instruction pointer. While the musical possibilities
of this approach are effectively unconstrained, the resulting
space of possible outcomes becomes correspondingly vast.
Therefore any small changes in hyperparameters may result
in a chain reaction, greatly changing the outcome.

The evaluation process employs fitness tests that judge the
similarity between certain properties of a musical phenotype
and those of a chosen corpus of existing music. We use
Bach’s Inventions and Simfonias2 set of keyboard exercises
as our corpus, chosen mainly because of the pieces’ homo-
geneity in length, style and complexity. The corpus data is in
no way copied or included into any rendered phenotype, it

2Works BWV 772-801 downloaded from www.midiworld.com/bach.htm

https://bitbucket.com/csabasulyok/emc
www.midiworld.com/bach.htm
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Figure 3. An example distribution of different operators when assembling
generation n+1 from generation n. The numbers represent fitness values. In
this small case, 12.5% (1 out of 8 individuals) of the population is created
through reproduction, another 12.5% through mutation, while the rest is
bred. All source units from generation n are selected using roulette-wheel
selection.

is merely used to inform our fitness evaluation. The tests
focus on the underlying statistical properties of a model
rather than the sameness of the data itself; it is therefore
possible for a model to achieve high grades without being
identical to a member of the corpus as long as it shares
certain traits captured by those statistics. To produce these
statistics, we subject models to a series of transform methods
such as histograms, histograms of differentials and Fourier
transforms; together they produce a fixed-size descriptor.
The final similarity of a musical model is determined by
Pearson-correlation of the descriptor to that of the corpus
members. Correlation of different properties may contribute
to the final grade with different weights, making the assess-
ment multi-objective by nature [32]. The array of fitness
values contribute to the genetic operators which build the
next generation.

Before the application of adaptive genetic operators, the
system uses probabilistic reproduction of a fixed number
of individuals in each generation, incorporating fitness and
age into the roulette-wheel selection (see Figure 3). It
uses a fixed number of altered bytes nm in mutation, and
homologous crossover with multiple cut points nc.

IV. ADAPTIVE OPERATORS

Our adaptive parameters all employ heuristic hill climb-
ing [23]. We label the value of an adaptive variable at time
t as xt. Each such variable is assigned a set of adaptation
vectors {∆0,∆1, . . .}; these slightly alter the monitored
value to search for a positive impact. An initial value x0 is
given and an adaptation vector index i is randomly selected
upon launch; the value is altered by the appropriate vector
∆i at every evaluation (xt+1 := xt + ∆i). The vectors
are represented as Markov states [33] whose transition
probabilities at every step (represented by a change of the
value i) depend on the positive impact of their usage. In
the case of global adaptive parameters, positive impact is
equivalent to a higher overall fitness of the population; in
individual cases it is a higher fitness than the average of
the two parents. Fitness growth gives higher probability
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Figure 4. Usage and setting of the adaptive crossover rate nc. A mother
and father are selected, the cut point count of the first is applied and two
offspring are born; their crossover rates are inherited and modified based
on hill climbing. If the new units perform poorly, their adaptation vector
∆nc will change in the next iteration.

to remaining in the current state of i, continuing the hill
climb in the same direction. If the fitness drops or remains
unchanged, the probability of a state change grows, with
uniform probability assigned to all other j, j 6= i values.

Single operator parameters such as operator rates use
a single discrete value for xt, with ∆i taking on values
from {−1, 0, 1}. The values (and therefore their adaptation
vectors) are integers, since they represent discrete byte
counts in the genetic strings involved in operations, such
as the number of randomized bytes or cut points.

In our implementation of individualized adaptive oper-
ators, the rate of crossover and mutation is hereditary. In
crossover, each of the two offspring receives one parents’
rates, possibly adapted (see Figure 4). Similarly, mutated
units inherit the original rate.

Operator distribution is represented through the numbers
of units created using each operator, yielding a 3-value vec-
tor xt = (rt, ct,mt) whose values sum up to the population
size: rt + ct + mt = N, ∀t. Adapting xt implies preserving
the sum of the underlying values, therefore ∆i exclusively
takes on values whose elements sum to 0, such as (0, 0, 0)
and vectors containing 0, −2 and 2 in any order. The latter
examples use a step size of 2 instead of 1 to preserve ct as an
even number, since pairs of parents are involved in crossover.
For example, ∆i = (−2, 2, 0) represents an alteration after
which 2 fewer children of the subsequent generation are
created through reproduction, replaced instead by a pair bred
using crossover.

V. EXPERIMENTS

The presented experiments explore the distribution of
operators and the main parameters of crossover/mutation; in
the latter case, the tests extend to both the centralized and
individualized adaptive approaches. The following settings
are tested for operator distribution:

1) the standard distribution of 8% reproduction, 90%
crossover and 2% mutation, as proposed by [11];

2) adaptive distribution using the standard one as a start-
ing point.

Comparing a standard distribution to an adaptive one
allows us not only to measure if adaptivity accelerates or
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Figure 5. Final generation fitness scores grouped by operator distribution
and rates. The wide bars show the average mean and standard deviation
of the populations throughout the run, while the narrow bars show highest
scoring entities.

improves the algorithm, but also should highlight an optimal
distribution which may be used in further experiments (if it
differs from the standard).

The tested rates include the number of cut points nc

and the number of mutated bytes nm, both represented
proportionally to the size of the genetic string. Changing
values include:

1) constant values used in [8]: nc = 0.1%, nm = 2%;
2) global adaptive values starting with the same values

used in the first case, adapted once globally every
generation;

3) individualized adaptive values starting with the same
values used in the first case, inherited and adapted per
individual every generation.

For each of the resulting 6 configurations we run a total of
20 iterations, allowing the algorithm to reach 10000 genera-
tions each time. Other settings are given as defined in [8]: a
population size of 1024, we generate 30 second long pieces,
the VM uses an instruction set with immediate addressing
and a 64kB size RAM. Furthermore, survival through repro-
duction (aging) reduces further survival chances by 10%.

All highest scoring entities of the runs can be downloaded
in MIDI format from https://csabasulyok.bitbucket.io/emc.

VI. RESULTS & DISCUSSION

Figure 5 shows a snapshot of the last generation of each
test run; it depicts the mean and maximum values averaged
over the 20 test runs for all 6 configurations. The results
suggest adaptive operator setting provides only marginal
benefits and only in select cases.

For instance, adaptive operator distribution seems to in-
crease the maximum fitness within a population, but at the
cost of lower mean values in each case. Figure 6 provides
further analysis of the result, averaging the different configu-
rations together and visualizing the progression of mean and
maximum grades through the generations. Indeed, the best
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Figure 6. Fitness progression through the generations when using a
constant vs. adaptive operator distribution; the results suggest adaptive
operators provide better highest scoring individuals at the cost of a poorer
overall population.

entities using the adaptive operator distribution consistently
outperform the ones using a constant distribution, but the
mean fitness of the populations is consistently smaller. This
result is surprising, since the hill climbing operation uses the
population’s mean fitness to adapt the distribution, without
analyzing the maximum or the deviation.

Figure 7 shows the average change of the distribution
values through the generations. The values are shown as
percentages relative to the starting configuration of 8/90/2.
The results show that the marginal improvement of maxi-
mum grades in a generation may be achieved by increasing
the percentage of entities created through mutation by 3-4%,
taking away from those bred through crossover.

Individual rate adaptations provide no significant improve-
ment over the baseline; this could be due to the overwhelm-
ing number of dimensions hill climbing is trying to explore.

0 2000 4000 6000 8000 10000
Generation index

0.10

0.08

0.06

0.04

0.02

0.00

0.02

0.04

0.06

Di
st

rib
ut

io
n 

de
vi

at
io

n

Reproduction
Crossover
Mutation

Figure 7. Average change of the genetic operator distribution relative to the
starting configuration when using hill climbing. The results suggest better
convergence when more units are created through mutation and slightly
less by crossover.
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Figure 8. Average change of global operator rates when using a constant
distribution. The number of cut points nc show an increase in later
generations, while the number of altered bytes nm slightly decrease.

With our experiments using 1024 entities, the rates employ
2048 independent hill climbing operators.

Further analyzing the last generation leads us to conclude
that the best results are achieved when globally adapting mu-
tation and crossover rates, leaving the distribution constant.
Analysis of how the rates change in this case (see Figure 8)
reveals that the number of cut points show a slight increase
in later generations, while the number of bytes involved in
mutation slightly lower. However, because the number of
mutated bytes has a larger starting value, the change of nm

has a much smaller impact than that of nc.

VII. CONCLUSION & FUTURE WORK

In this paper, we have explored the application of adaptive
genetic operators when faced with a complex problem:
automatic music composition using linear genetic program-
ming. Our approach to this problem differs from others
in the literature by modelling the thought process of the
composer as a sequential program running on a simple von
Neumann register machine. Finding “good” pieces of music
then becomes a linear genetic programming problem, where
quality measurement is fully automated and is based on
similarity to real world music.

The three basic operators used in evolutionary algorithms
have been detailed: reproduction, crossover and mutation.
We have tackled setting their distribution as well as their
individual settings (number of mutated bytes and number of
cut points in crossover) based on commonly accepted values,
but also employing an adaptive strategy with hill climbing.

The results demonstrate that hill climbing does not radi-
cally impact the overall quality or conversion speed of the
presented system. It gives only marginally better maximum
fitness values at the cost of worse overall performance
when applied to operator distributions. Global operator rate
adaptation proves to be efficient when not combined with

distribution changes, reducing the dimensionality of the
problem hill climbing must tackle.

In the current state of our framework, it uses genetic op-
erators exclusively: one individual is built using exactly one
operator. However, it is common in evolutionary algorithms
to combine crossover and mutation to create new units [5];
we propose further algorithms exploring adaptive methods
in such a context.

We further propose experiments using the adapted oper-
ator distribution values from Section VI as a starting point.
Perhaps an increase in mutation at the cost of less crossover
already implemented in generation zero may help these
values reach their full potential.

Hill climbing is only one of many adaptation possibilities
for operators. Alternative strategies such as a second ge-
netic algorithm [26], simulated annealing [34] or supervised
learning methods may prove useful in such a linear genetic
programming problem.

The other building blocks of our evolutionary music
composition system also dictate possible expansions. For ex-
ample, the currently used corpus contains many key changes
and complex passages, possibly making it overly complex
for a system beginning its learning from pure randomness.

Further experiments involving the virtual machine as a
phenotype renderer may also aid the current research. To
this end, we propose the exploration of more complex
VM architectures and instruction sets [9] as well as Turing
universality in spiking neural P systems [35].
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