
1Babes, -Bolyai University,
Cluj-Napoca, RO

csaba.sulyok@gmail.com

On Virtual Machine Architectures for
Evolutionary Music Composition

Csaba Sulyok1, Christopher Harte2

2Scored Ltd. London, UK
chris@scored.film

Introduction

I ‘All composers are algorithmic composers, not just the ones who profess it.’
Cope

I We model the thought process of a music composer as a Turing-complete
virtual machine which outputs pieces of music based on their own existing
work as well as the work of others.

I Our framework1 uses linear genetic programming whose genotypes are
programs written in an arbitrary sequential language instead of a functional
one.

I We investigate the effect of virtual machine architecture and memory size
on the quality of the results and performance of the algorithm.

I Our approach is deliberately general in nature making it not only suitable
for music, but for many other types of complex data as well.

System Overview

Breeder

Breeding selector

Model builder

Descriptor builderCorpus

Similarity test container

genetic strings

descriptors

musical models

grades

genetic string pairs

new genetic strings

Virtual machine

output bytes

corpus descriptors

Random generator

generation zero

Figure: The workflow of our algorithm

I The framework follows linear
genetic programming
conventions;

I Genotype: a fixed size byte
array representing the initial
condition of the virtual
machine;

I Phenotype: a piece of music,
encoded similarly to MIDI;

I the virtual machine executes
the genotype code and
interprets the output as a
musical model;

I Fitness: statistical similarity
to a corpus of real music; in
this case, a set of Bach
keyboard exercises2.

Virtual machine architectures

Our framework is able to simulate any real life Turing-complete processor.
We compare the following different virtual machine architecture and design
decisions3:

1. Von Neumann vs. Harvard architectures
. Von Neumann machines use a common instruction and data space,

allowing self-rewriting;
. Harvard machines have separate read-only instruction space and data

storage.

2. Register vs. stack-based machines
. Register machines store local variables in a set of general-purpose or

specialized registers;
. Stack-based machines hold these variables in a fixed-size push-down stack,

creating an arbitrarily large local data space.

3. Complex vs. minimal instruction sets
. The complex instruction set assigns different instructions to all 256 values

of the 8-bit instructions; these may become vulnerable to small changes;
. We also test a modified single-instruction set: SBNZ - subtract and branch

if not zero.

4. Large vs. small memory size
. Our experiments use different memory sizes (256 bytes, 4KB or 64KB);
. We also analyse how much memory is actually used in different runs.

Results

I 18 different configuration combinations
I 20 experiments each
I 10000 generations

0.0 0.2 0.4 0.6 0.8 1.0

Grades

Complex VN

Complex Harvard

Single VN

Single Harvard

Stack VN

Stack Harvard

(a) Final generation grouped by
instruction set and architecture

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Generation index

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Fi
tn

e
ss

 t
e
st

 g
ra

d
e
s

Max 256
Max 4096
Max 65536

Mean 256
Mean 4096
Mean 65536

(b) Grade progression grouped by memory
size

Architecture Memory size
Complex SBNZ Stack-based

Mean Max Mean Max Mean Max

Von Neumann
256 0.483 0.673 0.325 0.515 0.381 0.563
4096 0.469 0.667 0.263 0.475 0.342 0.516
65536 0.446 0.666 0.282 0.459 0.366 0.551

Harvard
256 0.495 0.672 0.426 0.596 0.383 0.540
4096 0.469 0.639 0.263 0.480 0.336 0.496
65536 0.314 0.528 0.283 0.474 0.340 0.514

Table: Statistics of the final generation of our test runs

0 2 4 6 8 a c e
0

2

4

6

8

a

c

e

0 2 4 6 8 a c e
0

2

4

6

8

a

c

e

Figure: Heat map of random generation zero genotype vs. a highest scoring one; darker
addresses have been touched more often.

Conclusions

I By architecture:
. The von Neumann architecture scored slightly higher than the Harvard

one in all cases except whe using the single-instruction set; this may be
caused by its long instructions being more fragile to self-rewriting.

I By instruction set:
. The complex instruction set gives the best results, but it is also vulnerable

to change.
. The single-instruction machine performed better than expected given its

complexity.
. The stack-based machine performed generally poorly.

I By memory size:
. Using smaller memory sizes consistently produced higher grades, although

this might show that the current tests do not properly reward complexity
inherent in using more memory.

. The size 256 mean values keep steadily rising even after thousands of
generations; this is possibly due to the smaller percent of unused memory
heightening the effects of mutation/crossover.

. Results tend to favor smaller loops which ultimately create simple musical
patterns.

I High-scoring MIDIs usually consist of a simple non-melodic pattern repeated
throughout the piece.

1 The project is hosted open-source at https://bitbucket.com/csabasulyok/emc
2 MIDI corpus available at www.midiworld.com/bach.html
3 Instruction set descriptions and MIDIs available at
https://csabasulyok.bitbucket.io/emc

14th European Conference on Artificial Life, Lyon, France, 2017

https://bitbucket.com/csabasulyok/emc
www.midiworld.com/bach.html
https://csabasulyok.bitbucket.io/emc

