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Abstract

In this project we present a music composition system that uses a corpus-based multi-
objective evolutionary algorithm. We model the composition process using a Turing-complete
virtual register machine to render musical models. These are evaluated using a series of tests,
which judge the statistical similarity of the model against a corpus of real music. Exploring
the space of possible parameters, we demonstrate that the methodology succeeds in creating
pieces of music that converge towards the properties of the chosen corpus. These pieces
exhibit certain musical qualities (repetition and variation) not specifically targeted by our
fitness tests; they emerge solely based on the similarities.
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1 Introduction

The process of creating and assessing music is fundamentally subjective and hard to define.
Thywissen (1999) describes it as ‘an aesthetic search through the space of possible structures
that satisfy the requirements of that process: in our case, creating interesting music’. Com-
posers spend years perfecting and evolving their technique; to create new music successfully,
both experience of the composition process and knowledge of existing ‘good’ music is re-
quired. The composer’s judgement as to whether a new musical idea is good or bad will be
a subjective decision based on their knowledge and memory of previous pieces (see Figure
1). As their creative process evolves, so too should the quality of their compositions.

The knowledge of external music is indirect: a listener only hears the output of the com-
position process, without intimate knowledge of the creation steps. This indirect involvement
is the seed a starting composer may use. After the initial phase, later compositions are more
directly inspired by own previous works. The composer is intimately familiar with the pro-
cess used in his/her previous attempts; this process may be refined over time.

Since the development of a composer’s skill can be viewed as an evolving process, it
seems intuitive that evolutionary computation techniques should find utility in algorithmic
music composition.

In this paper we model the composer as a Turing-complete virtual machine. His/her brain
is viewed as a computer with a predefined set of instructions. These instructions mimic the
real-world atomic steps taken to output a piece of music. The program running on this ma-
chine is the subject of evolution. While the instruction set is fixed, the order and parameters
with which they are executed evolve over time.

This virtual machine is not limited to music creation. Its output is merely a set of bytes
which receives context only once we view it as a musical piece. The machine and the evolu-

Composer

External musical 
influences

New piece of music

knowledge inspires

Experience of 
composition process

produces

informs

Figure 1: The creative process of a composer is informed by both experience of music in
general (external influence of others’ music) and experience gained through practice of the
composition process itself.
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tionary strategy of its programs could virtually mimic any creative process.
In our context, the output of the virtual machine is interpreted as a musical piece which

is assessed by judging statistical similarity to a corpus of real music. The corpus represents
the set of our virtual composer’s external inspirations. We have no knowledge about the
composition process leading to the music within the corpus, just as in real life a composer
only sees the product of his/her idols’ labour, not their steps in creating it.

The statistics we calculate to judge the similarity to the corpus are intuitively chosen
based on musical traits they may represent. On the other hand, the comparison process is
once again applicable to any corpus-based evolutionary process.

This research builds on the foundation set in our previous research (Sulyok et al., 2015)
by exploring the space of different parameters. We aim to answer the question “What are the
set of parameters that help the evolutionary algorithm most in its guided search for music
similar to a corpus?”.

Our results show musical pieces with a tendency for reoccurring patterns. While repetition-
based musical traits emerge, other musical properties (such as harmony) are lacking and
signal the need for tests more directly inspired by music theory.

1.1 Document structure

The remainder of the current document is structured as follows:

• Section 2 presents the concepts of genetic algorithms, genetic programming and how
they have been used in the past for similar research.

• Section 3 outlines the intuition behind the choice of evolutionary algorithms and the
design overview of the algorithm.

• Section 4 presents the design and implementation of an abstract genetic programming
framework, which is extended in further sections for our purposes.

• Section 5 details the virtual machine as the representation of a composer’s process. It
introduces the genetic string (a condition of a virtual machine - our genotype), its evo-
lution strategy and the details of execution. It furthermore presents how we generate
code to interpret a genetic string using custom instruction sets presented in Appendix
C.

• Section 6 shows how we represent music (our phenotype) and how a genotype is ren-
dered into a musical model.

• Section 7 presents the assessment methods used to evaluate a musical model. It intro-
duces the chosen corpus along with preprocessing steps we apply to it as well as the
statistical transforms used for quality assessment.

• Section 8 presents the different configurations used in our experiments and discusses
the results.
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• Section 9 draws conclusions and presents possibilities for future extensions.

• Appendix A describes the supporting material attached to this document.

• Appendix B details the programming tools used to implement, build and run the algo-
rithm, as well as possible command-line arguments.

• Appendix C details the instruction sets used by the virtual machine in the current tests.

• Appendix D shows a few randomly selected result models.

8



2 Background

2.1 Genetic programming

End

Start

Create
generation zero

Render
phenotypes

Stopping
condition

Assess
fitness

Mutation

Survival of
the fittest

Natural
selection

yes

no

Figure 2: Typical workflow of a genetic
programming algorithm

A genetic algorithm (GA) (Goldberg, 1989) is a
computational solution search method inspired
by Darwinian evolution theory. It hinges on
evolving potential solutions by modelling natu-
ral selection on a population. The change and
natural progression of this population is influ-
enced by an arbitrarily defined fitness of each in-
dividual which determines the probability of re-
production and/or survival. Computational mod-
els based around the principles of evolution have
been proposed since Turing (1950). Since then,
genetic algorithms have found use in countless
fields including computer science, mathematics,
economics, bioinformatics etc.

Genetic programming (GP) (Cramer, 1985;
Koza, 1992) is an extension of genetic algo-
rithms. It evolves programs which produce so-
lutions instead of evolving the solutions them-
selves. The intuition behind genetic program-
ming lies in the separation of the genotype and
phenotype. A genotype is the genetic composi-
tion of a unit which is modelled by the evolving
program. The phenotype represents the observ-
able traits of a rendered unit, i.e. the output of
the evolving program. This separation implies
the genotypes as the subject of evolution (they
are spliced and mutated to create new individu-
als) and the phenotype as the subject of assessment.

The generic steps of an algorithm using genetic programming are as follows (see Figure
2):

1. We start with an initial population of random genotypes (programs), which we name
generation zero.

2. Phenotypes are rendered from the genotypes (the programs are run).

3. Phenotypes are assessed based on how good they solve the given problem(s): numeric
grades are assigned to them.
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4. A new generation is built using the following steps:

(a) Some of the best units survive to compete in a new generation (survival of the

fittest).
(b) The process of natural selection selects the next generation’s parents based on

their fitness.
(c) The crossover process creates new genotypes by splicing the genetic code of the

chosen parents.
(d) The new units are subjected to mutation.

5. Steps 2-4 are repeated until an arbitrary stopping condition is reached.

Early works on genetic programming (e.g. Cramer (1985)) used programming languages
organized in a tree structure. Linear genetic programming (Brameier and Banzhaf, 2010)
uses an alternative representation: an arbitrary sequential language. The current work uses
linear genetic programming since we view the composition process as a program running
on a Turing-complete virtual machine (details in Section 5). Although the code execution
is linear, this does not exclude the emergence of arboreal structures in the musical output;
branching instructions may push a program to output repeating notes, motifs or entire sec-
tions, creating a tree-like structure. This design choice does not exclude exploring a tree-
representation in future work (see Section 9.1).

A solution as found by genetic programming may apply to multiple problems, not just
one. Multi-objective genetic algorithms (MOGAs) (Fonseca and Fleming, 1993; Murata and
Ishibuchi, 1995) extend conventional GAs by assessing fitness from multiple aspects. The
different tests impact the overall fitness in different degrees, therefore we can represent the
overall fitness as a weighted sum of the results of the independent tests. Multi-objectivity
may be exploited to simulate the “opposites attract” effect (Dolin et al., 2002): favouring
the mating of parents who excel at different tests (see Section 4.4).

A more recent modelling technique for evolutionary systems is grammatical evolution

(GEs) (O’Neill and Ryan, 2001). This approach allows the incorporation of domain knowl-
edge by using a problem-specific formal grammar.

2.2 Literature review

Using evolutionary models for composing music is nothing new; examples date back to
the early 1990s. Most examples use genetic algorithms and not genetic programming for
evolving music, either partially or in its entirety. However, the subjective nature of music
quality makes defining appropriate machine fitness tests difficult (Hartmann, 1990; McIntyre,
1994; Miranda and Biles, 2007; Waschka, 2007). As a result, much previous research in this
area attempts to narrow the search space.
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One of the earliest applications of evolutionary algorithms in a musical context was per-
formed by Hartmann (1990). His program LUDWIG evolved ‘musical identities’: an event-
based representation of musical properties. He viewed all properties as different dimensions
which exponentially increased the search space; he concluded that this resulting space was
‘very difficult to handle’.

Gibson and Byrne (1991) proposed segmenting the composition process and encapsula-
ting the resulting model in a neural network. This allowed the evolution of the network, re-
sulting in a prototype able to produce short musical pieces (4 bars). Similarly, Chen and Mi-
ikkulainen (2001) have evolved neural networks to create melodies obeying Bartók’s rules.

Horner and Goldberg (1991) used GAs to connect 2 musical motifs (an initial and fi-
nal pattern). The algorithm searched for a route between the 2 patterns by applying small
variations at each step. They have dubbed this method ‘thematic bridging’. While their re-
search purely used GAs to produce longer pieces of music, it still required the input of the
2 patterns. Similarly, Towsey et al. (2001) used GAs for ‘melodic extension’: generating
musically appropriate succeeding segments for input melodies. Besides generating the ex-
tensions, their algorithm’s assessment method was also aimed towards evaluation/assistance
of music students.

To reduce the otherwise vast solution space of all possible music, many previous ap-
proaches have focused on evolving one particular musical property. Early examples include
McIntyre (1994) and Phon-Amnuaisuk et al. (1999) who both used a GA to harmonise input
pieces to obey preset harmony-related rules.

In more recent years, De Prisco et al. (2011) used multi-objective differential evolution
to solve ‘unfigured bass harmonization’: the composition of new tracks around a given bass
track. Martins and Miranda (2007) have attempted to evolve rhythmic patterns by modelling
music ‘as a cultural phenomenon whereby social pressure steers the development of musical
conventions (in this case, repertoires of rhythmic sequences)’. Dostál (2012) explored au-
tonomous fitness tests to evolve rhythm accompaniments by comparing with cues given by
other instruments, e.g. bass. The novelty of Dostál’s work also includes mutation operators
inspired by music-theory, e.g. adding syncopation or changing stroke types.

Alfonseca et al. (2007) have used melody distancing as an assessment method to evolve
pieces reminiscent of a certain author. Similarly, Nuanáin et al. (2015) attempted to evolve
rhythm patterns by evaluating distances between patterns in the population and a preset ‘tar-
get pattern’.

Another approach to help the guided search for good music is inputting the initial pop-
ulation rather than generating it randomly. Waschka’s GenDash (Waschka, 2007) employs
this technique to ‘help compose’ pieces rather than composing them entirely. Waschka has
released a large number of pieces created with the aid of this program. Similarly, Eigen-
feldt’s Kinetic Engine (Eigenfeldt, 2009, 2012) evolves rhythmic and melodic patterns; its
‘initial population is derived from an offline analysis of a corpus’.

11



Other previous approaches use interactive genetic algorithms (IGAs): GAs relying on
human feedback for fitness evaluation. For example, Horowitz (1994) and Tokui and Iba
(2000) applied IGAs to evolve rhythm patterns, while Jacob (1995) used it for multiple
musical properties. One of the more well-known early music-related IGAs is GenJam by
Biles (1994): a program capable of evolving improvisatory passages. It used an arboreal
IGA to model the evolution of an improvising jazz soloist. Other examples of IGAs include
the MIDI-based GeNotator (Thywissen, 1999) and SBEAT3 (Unemi, 2002). In 2012, Mac-
Callum et al. (2012) created the online DarwinTunes community to crowd-source human
feedback for choosing which music pieces will be selected for breeding.

Donnelly and Sheppard (2011) have presented a GA evolving entire four-part musical
pieces only given a chord at initialisation. Their work also hinges on adaptive crossover and
mutation rules during the run of the algorithm.

Some of the previous work has also focused on grammatical evolution. For example,
Reddin et al. (2009) used GE to create short musical pieces which were evaluated with lis-
tening tests. A recent GE-based work by Loughran et al. (2015) composed piano pieces and
accompaniments by incorporating Zipf’s distribution to derive a suitable search space.

The work seen thus far has focused on evolving sheet music with no tempo changes
or musical expression. Dahlstedt (2007) breaks this cycle by also evolving performance
elements along with the pieces. He does this by modelling music composition as a binary
tree with notes in the leaf nodes.

An exhaustive review of the different AI-based algorithmic composition methods has
recently been published by Rodriguez and Vico (2013).

The current research differs from previous literature by incorporating linear GP elements
via the virtual machine, effectively evolving the process rather than musical pieces. Our
approach also differs in the way we utilise the corpus; we use it to assess fitness instead
of deriving the initial population from it. We also attempt to model all musical properties
exhibited by our corpus (this excludes velocity, see Section 7.1).

12



3 Concept & design

When designing an evolutionary system, we must first answer the question: “What is this sys-
tem supposed to evolve?”. Previous composition systems have generally attempted to evolve
musical pieces but in this paper we propose evolving the composition process instead. We
cast the action of composing a piece of music as a process running on a Turing-complete vir-
tual computing machine. The virtual machine has a set of instructions that will be executed
in a given order depending on the initial state of its memory (i.e. its program) and some way
of writing notes onto a musical ’score’ whenever an output instruction is encountered.

The development of the composer’s skill then becomes a genetic programming problem;
the genotype is the program string presented to the virtual machine and the phenotype its
musical output. In such a system, the executing process on the virtual machine can hold
internal structuring rules and information that are not visible in the final musical phenotype.
Whorley et al. (2013) address this point in the context of melody harmonisation, the exact
steps of which cannot be known just by listening to the piece of music. Decoupling the
genetic program and the resulting musical phenotype in this way allows for the emergence
of complex structures not possible in more constrained musical models. For example, a
conditional branch statement in the program can cause the repetition of a single note or
section, or perhaps even the entire piece depending on where it occurs. While the musical
possibilities of this approach increase in number, the resulting space of possible outcomes is
very large and hard to analyse, so careful design of fitness evaluation is necessary.

As mentioned in Section 1, the composer’s creative process cannot operate in a vacuum;
it is necessarily dependent on the influence of works from previous composers. In the same
way, our evaluation process employs fitness tests that judge the similarity between statistical

Virtual composer

Corpus of existing
music

New piece of music

learns evolves

Previous works
of mine

produces

becomes

Figure 3: The intuitive way a virtual machine can model the composition process. The com-
poser is modelled by a virtual machine whose thought process is a program. It is influenced
by real music (the composition process of which is unknown), and by own previous works
(more intimate knowledge).
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Breeder

Breeding chooser

Model builder

Descriptor builderCorpus

Similarity test container

genetic strings

descriptors

musical models

grades

genetic string pairs

new genetic strings

Virtual machine

output bytes

corpus descriptors

Random generator

Figure 4: Workflow of the algorithm: A population of genetic strings is interpreted by the
virtual machine and the resulting bytes are used to build models; statistical transforms are
performed on the models to yield descriptors, which are used in similarity tests to assess
fitness of the musical pieces. Based on these grades, genetic strings are bred and mutated to
produce the next generation.

properties of the current musical phenotype and those of a chosen corpus of existing music
(in this case, a group of Bach keyboard exercises). Our evolutionary algorithm is multi-
objective in nature, incorporating tests for a number of different properties (Fonseca and
Fleming, 1993).

Our aim here is to establish whether the use of virtual machine and corpus-based similar-
ity tests together will help the system converge towards the properties of the chosen corpus.
Although the phenotype in our current system is music, we propose this method as a generic
one that can be applied to the evolution of any creative process.
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3.1 System overview

Our system follows a conventional genetic programming structure (see Figure 4). An initial
population of genotypes (genetic strings) is generated randomly then each individual is run
on the virtual machine in turn (see Section 5). The instruction set used by virtual machine
indirectly impacts the possible structure of the output music (e.g. branching instructions may
dictate repetitions).

The output of the virtual machine is a byte stream that is parsed by a model builder

to create our phenotype, a musical model (see Section 6). The structure of this model is
completely independent of the structure and mechanism of the virtual machine. This two-
stage approach to rendering the model deviates from previous musical evolutionary systems
in that the genetic string is not directly used to build the phenotype, instead being interpreted

by the virtual machine.
Each phenotype model is evaluated using a series of tests derived from the corpus. These

tests focus on the underlying statistical properties of a model rather than the similarity of the
data itself (see Section 7.3). High grades can therefore be achieved not only when a model
is identical to a member of the corpus, but also when it is statistically similar to them. To
produce these statistics, we subject models to a series of transform methods to produce a
descriptor. The construct which creates a descriptor from a musical model is a descriptor

builder. We refer to the complete set of tests as the similarity test container.
Based on the assigned grades, the breeding chooser chooses pairs of units for crossover

and/or survival and the breeder splices these pairs to create offspring. The crossover and
mutation process operates on the genetic strings producing a new generation of programs for
the virtual machine to execute (see Section 5.2).

15



4 Genetic programming framework

In this section, we present an abstract genetic programming framework capable of modelling
all building blocks seen in Section 2.1. The structure of genotypes/phenotypes are left unde-
fined for now, to be concretized in later sections for our specific usage.

The separation of the framework from the musical implementation allows the emergence
of a modular design, achieving separation of concerns (SoC) (Laplante, 2007). The detailed
description of the project structure can be found in Appendix A.

4.1 Population

The exact definition of genotypes/phenotypes are unknown to us at this point; therefore, to
retain the object-oriented and typesafe nature of the implementation, empty classes named
Genotype and Phenotype are provided, which can be extended by the user. Section 5.1 and
6 describe how we these entities are made concrete for the composition problem.

Separation of concerns now allows us to construct the Population class, which holds
the following information:

• population size - the number of units in this population (denoted as N );

• genotypes - a collection of Genotype instances;

• phenotypes - a collection of Phenotype instances;

• grades - the overall fitness test results of each unit, stored as floating-point numbers
between 0 and 1 (see Section 4.3);

• grades per test - the framework supports a multi-objective context and this is where
individual test grades are stored; it is a matrix of size N × T , where T is the number
of fitness tests;

• ages - each unit is attributed an age so the survival mechanism can discard too old
units; for more details, see Section 4.4.

The Population class holds this data as separate arrays with colliding indices for code
optimization and ease of use.

4.2 Phenotype renderer

We define a phenotype renderer as the construct which takes a genotype and constructs the
appropriate phenotype from it. Since this process heavily depends on the nature of the geno-
types and phenotypes, we can attain another abstraction, simply described as: a phenotype
renderer takes genotype(s) and creates phenotype(s).

Therefore the underlying class, PhenotypeRenderer, will have an abstract method which
takes a Genotype argument and returns a Phenotype. Since we have defined our Population

16



Code Snippet 1 Running a phenotype renderer on all individuals from a population, without
the knowledge of the genotype/phenotype structures. Child classes must implement the run
method.
class PhenotypeRenderer(object):

’’’
Abstraction of a phenotype renderer, which takes genotype(s)
and produces the corresponding phenotype(s).
’’’

def runOnPopulation(self, population):
’’’
Runs the phenotype renderer to produce phenotypes for each genotype
in a given population.
’’’
for phenotypeIndex in range(population.numUnits):

# create new phenotype (self.run is abstract)
newPhenotype = self.run(population.genotypes[phenotypeIndex])
# assign to same index in population
population.phenotypes[phenotypeIndex] = newPhenotype

return population

as a collection of individuals, the PhenotypeRenderer can also take care to create pheno-
types from all genotypes within a population (see Code Snippet 1).

4.3 Fitness tests

For the evaluation of any phenotype, we use a series of fitness tests. A fitness test (class:
FitnessTest) is programmatically defined as a method which has a phenotype as input,
and a floating-point grade as output.

To support multi-objectivity, we define a container (class: FitnessTestContainer),
which contains a series of fitness tests. We will refer to the overall number of tests as T .

Given a phenotype pk and test index t, the test ft(pk) returns a grade gk,t, which is a
numerical value between 0 and 1. The phenotype’s overall grade ḡk is determined by a
linear combination of the individual grades per test. We will refer to the coefficients of this
equation as importances, since a higher coefficient means the test impacts the overall grade
more. Every test ft is assigned a predefined importance it. The importances are scaled to
sum to 1 over all tests:

T−1∑
t=0

it = 1 (1)

therefore the overall grades will also lie between 0 and 1:

gk,t ∈ [0, 1] ⇒ ḡk =
T−1∑
t=0

itgk,t ∈ [0, 1] . (2)

Tthe FitnessTestContainer class allows running all tests on a phenotype or a whole
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population, and persists both the individual and overall grades.

4.4 Evolution strategy

After the assessment of a population, a new generation is created based on the grades of the
current one. In our case, the size of the population remains the same over time.

4.4.1 Survival of the fittest

When creating generation n using the grades from generation n− 1, we begin with survivor
selection. Each unit’s survival is determined by:

1. their overall grades scaled by a fixed factor - In our tests, this factor is 15% (details in
Section 8.1). For example, a unit with an overall grade of 50% has a 7.5% chance of
survival.

2. their age - Each unit is attributed an age of 1 upon creation. This value is then increased
every times it survives. If it reaches a preset maximum age, it is no longer survived. In
our tests, this maximum age is 3.

This probabilistic approach to survival differs from our previous research (Sulyok et al.,
2015), where a preset number of highest scoring units were chosen. The impact of this
change is detailed in Section 8.5.

4.4.2 Natural selection

The selection of parents for crossover is determined using complementary phenotype selec-

tion (Dolin et al., 2002). In this process, mothers are chosen based on roulette-wheel se-
lection (Lipowski and Lipowska, 2011) and hypothetical best-case offspring are created by
taking the maximum of the two potential parents’ grades on each test. Fathers are then cho-
sen through roulette-wheel selection on these hypothetical children rather than the original
units.

This method exploits the multi-objective nature of our tests by assigning a high proba-
bility to the mating of parents who score high on different tests. The choosing process for
survival/crossover is encapsulated in the class GenotypeChooser and an example can be
seen in Figure 5.

4.4.3 Crossover & mutation

Before phenotype rendering and assessment, the genotypes themselves must be created. The
GenotypeBreeder class groups together all functionality having to do with creating or al-
tering genotypes. The following methods are declared:
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Figure 5: An example of choosing units to build generation n + 1 using generation n. The
numbers in generation n represent the units’ overall grades. The darker units are survived
randomly based on their grades and age, while the remainder of the population is filled by
choosing pairs of parents for crossover.

• Creating the first genotypes: The algorithm’s initial population (generation zero) of
genotypes is usually created by random means. We associate an abstract method
method for this creation: createGenerationZeroGenotype; it creates a genotype
from no arguments.

• Crossover: To create a new generation from an existing one, two genotypes must mate
to create a new one. The method breed therefore takes 2 genotypes as input, and
outputs 2 child genotypes.

• Mutation: Any new genotype can go through mutation independent from its parents’
genetic code, therefore the method mutate will slightly alter a genotype.

Implementation details for our context can be found in Section 5.2.
The PopulationBreeder class encapsulates the GenotypeBreeder and GenotypeChooser

instances. It is able to create a generation zero population and to breed a new generation from
a previous one. The latter process is performed using the following steps (also seen in Code
Snippet 2)

1. We choose the units for survival and crossover (see Figure 5) using the genotype
chooser.

2. We survive the chosen units. Upon survival, only the genotypes are copied; they will
be rendered and evaluated again, since adaptive phenotype renderers may produce a
different phenotype and adaptive fitness tests may give different grades in the newer
generation. Survival also increases a unit’s age by 1.

3. We use the genotype breeder to perform crossover on the chosen pairs of parents,
resulting in two offspring per pair.

4. We mutate the offspring and store them in the new Population instance.
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Code Snippet 2 Creating a new generation from a previous one: choosing survivors/parents
and performing survival, crossover and mutation.
class PopulationBreeder(object):

# ...
def breedNewGeneration(self, oldPopulation):

’’’
Breeds a new generation from a previous one. Chooses parents and survivors
using the genotype chooser, and performs breeding/mutation using the genotype breeder.
’’’
newPopulation = Population(self.numUnits, self.numTests)

# choose indices for survivors and parents
(survivors, survivorCount, parents, parentCount

) = self.genotypeChooser.chooseUnits(oldPopulation, self.importances, self.maxAge)
# survive chosen units to new population
newPopulation.survive(oldPopulation, survivors)

for unitIndex in arange(parentCount):
# select parent genotypes
mother = oldPopulation.genotypes[parents[0, unitIndex]]
father = oldPopulation.genotypes[parents[1, unitIndex]]
# crossover & mutation
offspring1, offspring2 = self.genotypeBreeder.breed(mother, father)
self.genotypeBreeder.mutate(offspring1)
self.genotypeBreeder.mutate(offspring2)
# assign genotypes to new generation
newPopulation.genotypes[survivorCount + 2 * unitIndex] = offspring1
newPopulation.genotypes[survivorCount + 2 * unitIndex + 1] = offspring2

return newPopulation

4.5 Framework example

Before applying the framework to the music composition process, we test it using a simpler
example. This allows us to test and measure the performance of the abstractions presented
in this section.

The chosen example is finding the maximum value of a 2D function. Although this
problem is not typically solved with genetic programming, it is simple enough to test our
framework. The following classes are introduced to represent our example:

• Genotype: TwoDFuncArg - the arguments of the 2D function: x and y

• Phenotype: TwoDFuncResult - the result of applying the function to the genotype:
f(x, y)

• Phenotype renderer: SinCosProductPhenoRenderer - applies the function to create
the result from the 2 arguments. In the current tests, we have used

f(x, y) = 10 sin(x) cos(y) (3)

• Fitness test: TwoDFuncSigmoidMaxFitnessTest - assigns a grade to a phenotype. We
are testing for maximum values and are constrained to give numeric results between 0
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Figure 6: Assessing the output of a function: we scale its value to the 0-1 range using the
sigmoid function (see Equation 4).

and 1. To conform to both of these criteria, we use a sigmoid function:

sα,β(x) =
1

1 + e−αx+β
(4)

where α and β are defined in advance (see Figure 6 for impact of different values).

• Genotype breeder: TwoDFuncArgBreeder - contains the edges of our search space
(xmin, xmax, ymin and ymax) and provides the evolutionary strategy for arguments:

– Generation zero arguments are randomly generated by sampling a uniform dis-
tribution between xmin : xmax and between ymin : ymax.

– We represent arguments as vectors on a 2D plane where the 2 arguments represent
the dimensions. Given that ~p0 and ~p1 are 2 chosen parents, crossover creates 2
offspring using:

~o0 = ~p0 + (~p1 − ~p0)α (5)

~o1 = ~p0 + (~p1 − ~p0)(1− α) (6)

where α is a random number between 0 and 1.
– Mutation generates a random vector ~β which is added to an offspring.

These classes are stored in a separate project (see Appendix A) only having knowledge
of the framework classes and not the core ones we use for the musical implementation.

Testing with a population size of 20, the example consistently finds the maximum value
for the function within the first 50 generations. Most units in the population arrive at the
same maximum within the first 100.
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5 Virtual composer

We define a virtual machine as a Turing-complete von Neumann register machine which
mimics the workings of a processor. It contains the following memory segments (also shown
in Figure 7):

• 64KB Random access memory (RAM) - contains the actual program. Since this is a von
Neumann machine, the RAM is also part of the data used by the program, therefore it
may overwrite itself during execution.

• 16-bit program counter - points to the location in the RAM where the next instruction
resides; it is capable of addressing any position in the RAM and is increased circularly
during execution.

• 256 byte stack - a segment of memory where the program may push or pop data from
the registers or the RAM.

• 8-bit stack pointer - points to the location in the stack where the program will push
to/pop from.

• 8-bit accumulator register - a register with which arithmetic/logical instructions are
performed.

• 16-bit data pointer - a helper register capable of addressing any position in the RAM.

• a set of flags - a status register which contains additional information on the state of
the processor; currently only a carry flag is used in arithmetic operations.

• 8 8-bit general purpose registers.

5.1 The genetic string

Our genotype, the genetic string, is the initial condition of the virtual machine; it encom-
passes the initial value of the random access memory, the stack and all registers. When a
genetic string is fed into the virtual machine, all these segments are set as shown in Figure 7.

Since our virtual machine is a Von-Neumann machine, it can overwrite its own memory
while the process executes. To avoid the genetic string being changed in this process, it is

Random access memory (64KB) Stack (256B)

Program
counter

Data
pointer

Stack
pointer

Accumulator Flags 8 general-purpose
 registers

Figure 7: Structure of a virtual machine. It contains a 64KB random access memory (RAM)
and a 256B stack, which can be addressed by the 16-bit program counter and the 8-bit stack
pointer, respectively. Other registers include 8 general-purpose 8-bit registers, an accumula-
tor, a 16-bit data pointer and a set of flags.
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Figure 8: Visualization of the crossover process; random cut points are chosen on the parents
and offspring created from their recombination.

always copied rather than moved in the feeding process. This ensures that interpreting the
same genetic string multiple times will always result in the same output. Therefore we can
safely save, recall or re-evaluate any genotype.

5.2 Evolving genetic strings

As mentioned in Section 1, our subject of evolution is the composer’s process rather than
the product. Our genetic string represents this process, therefore we are evolving programs
running in the same preset virtual machine (Nordin and Banzhaf, 1995).

When creating and breeding genetic strings, we do not concern ourselves with how their
underlying data will be used later on, we simply view them as byte arrays. In the first run of
the algorithm, the generation zero genetic strings are randomly generated byte arrays of the
given size. In all subsequent generations, offspring are spliced versions of their parents. We
will refer to the genetic strings of the parents as p0 and p1.

With the parents p0 and p1 chosen, the genetic string breeder builds two new genetic
strings o0 and o1. It chooses a random number of cut points, separates p0 and p1 into chunks
and populates the offspring (Figure 8): one chunk is taken from one parent, the next from
the other.

Children o0 and o1 are then mutated by taking a random number of byte indices, and
randomizing those bytes. The ratios of maximum cut points and maximum mutated bytes to
the genetic string size are predefined for each run of the experiment.

5.3 Interpreting genetic strings

Running a program on the virtual machine is equivalent to reading 8-bit values from the
RAM where the program counter points, and executing the corresponding instructions de-
fined in the instruction set. The program counter is increased before the execution, since a
branching instruction may change the program counter’s value.
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Execution is terminated by reaching either a halt command or a preset maximum number
of commands or outputs. The latter conditions were added to avoid infinite loops.

The instruction set contains the following types of instructions:

1. Data transfer - copy a segment of the RAM or a register to another segment of the
RAM or to a register;

2. Arithmetic & Logic - perform simple arithmetic/logical functions on the accumulator
register and, optionally, another value from the RAM or a register;

3. Branching & conditional instructions - move the program counter to a different loca-
tion, optionally based on a condition;

4. Machine control - internal commands such as halting or pushing/popping using the
stack;

5. Output commands - outputs a value from the RAM or a register; this is the main
customisation we use to make the virtual machine serve our purpose; while all other
command types model the composer’s thought process, this type represents the actual
writing to paper.

For the current test runs, we have defined two different instruction sets, which only differ
in their inclusion of immediate addressing. The immediate instruction set allows instructions
to take the next byte(s) in the RAM as their parameter(s). In these cases, the program counter
is increased appropriately with the number of bytes used as parameters. Conversely, the
indirect instruction set only allows parameters from the registers or a point in the RAM
where a register points to. The complete list of instructions and their descriptions can be
seen in Appendix C.

Since all possible 8-bit values are mapped to an instruction, any bytearray with the ag-
gregate size of all the segments may be a condition of the virtual machine. Therefore any
bytearray with this size may constitute a genetic string. Since a genetic string fully repre-
sents a state of the virtual machine, it is ensured that feeding and interpreting the same one
multiple times will always give the same results.

The output bytes returned by the interpretation are used to build our musical model, as
detailed in Section 6.1.

5.4 Opcode interpretation

We define an opcode interpreter (OCI) as the module interpreting the code of a virtual ma-
chine. It reads 8-bit values from the RAM, mapping them to our custom instruction set (see
full table of used instruction sets in Appendix C). The following scenarios may arise when
parsing the bits of an incoming value:

1. We know which instruction it is after n bits where n < 8 and the remaining bits get
discarded;
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0...   -> a()

100... -> b(0)

101... -> b(1)

11...  -> c()

Figure 9: Example of an opcode interpreter’s structure. Circles represent pending nodes and
rectangles represent assigned nodes with the mapped instruction name. 3 instructions are
mapped to the opcode prefixes 0, 10 and 11. b is also attributed a parameter of 1 bit. The
right side of the figure shows the different cases for incoming opcodes.

2. We know which instruction it is after n bits where n < 8 and the remaining bits are
used as parameter(s) for the instruction itself;

3. All bits are needed to make an informed decision on which instruction to execute.

5.4.1 Arboreal opcode interpretation

A possible approach to mapping opcodes to an instruction would be to build a full map with
all possible opcode values as keys (256 in this case) and instructions as values. Using this
approach would result in the same instruction (possibly with different parameters) mapped
to multiple opcodes in scenarios 1 and 2. Therefore we use a binary radix tree to simplify
the representation in these cases. Interpretation is performed using the following steps:

• In the beginning, we are in a root node, where we do not yet know the instruction
mapped to the opcode.

• We read a bit from the opcode, which takes us down one of two pathways based on the
bit. This takes us to the next layer in the tree.

• At any time, we can be in one of two nodes:

– In a pending node, we still are not sure which opcode we have, so we continue
reading.

– In an assigned node, an operation has been assigned to the bits read thus far.
Therefore we have correctly identified the instruction we must execute, so the
rest of the bits can be taken as parameters or discarded. All assigned nodes are
leaves in the tree, since no more reading is necessary.

Since we do not know which instruction an opcode is mapped to before reading the first
bit, the root node is usually a pending node. Otherwise, the system would only have one
possible instruction assigned to the root node.
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Figure 9 shows an example of an OCI and its resulting interpretation cases. The OCI
contains 3 mapped instructions, called a, b and c. b takes a 1-bit parameter called x to be
read from the subsequent bits after the assigned prefix.

We consider an OCI complete if all possible values are mapped to an instruction, i.e. if
all pending nodes have 2 children and all leaves of the tree are assigned nodes (the example
in Figure 9 is therefore complete).

5.5 Generating the opcode interpreter

Upon exploring implementation options for an OCI, we can differentiate between two pos-
sible approaches:

• Representing the previously shown radix tree structure. This would be a more read-
able/elegant approach, but would reduce performance.

• Using a series of conditions/branches to determine the instruction. This low-level
approach would give the best performance, but would be harder to read or modify.

To overcome this problem, we can take the best of both approaches by generating the
opcode interpreter itself. The input to the generator uses a tree structure, while its output is
low-level code filled with conditional statements, which will ultimately be used by the algo-
rithm. The generator uses a domain-specific language (DSL) (Fowler, 2008): a specialization
of a regular language that restricts its usage to a given set of keywords. DSLs are often used
in code generators because they rely on two simple layers: a model built up by the keywords
(not to be confused with our musical model); and templates which represent the structure of
output files.

5.5.1 DSL model

The classes used for the binary radix tree modelling of the DSL are as follows:

• Node - an abstraction of a node in our tree.

• PendingNode - an implementation of Node which has 2 children, also of type Node.
These are the children assigned to bits 0 and 1.

• AssignedNode - an implementation of Node which holds an actual instruction. It con-
tains the instruction’s name, its description and parameters, if any. It has no more child
nodes since arriving at an assigned node means we have found the mapped instruction.

• OpCodeInterpreterModel - the main model object which contains the root Node.

Table 1 shows the global properties of an OCI, Table 2 shows the keywords of the DSL
and Code Snippet 3 shows the model for the example OCI as seen in Figure 9.
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Property name Description
name Name of OCI; used in class name patterns and generated doc-

umentation.

counterSize Size of program counter in bytes, set by default to 2 (16-bit).
The RAM’s size is 2counterSize so the program counter can access
every byte of it; e.g. an 8-bit program counter will yield a 256-
size RAM.

numRegisters Number of general-purpose 8-bit registers, by default 8. They
are always stored sequentially in the memory, so 8 8-bit reg-
isters can also be used as 4 16-bit registers, 2 32-bit registers
etc.

description Text description used in comments and generated documenta-
tion.

outputDir Folder where rendered files should be placed.

Table 1: Global properties of the OCI model

Keyword/parameter Description
reg Adds a new register to virtual machine. Initially only the pro-

gram counter and the general purpose registers are available.
-> name Register name
-> size Size of register in bytes. By default, 1.

mem Adds an additional memory segment besides the RAM.
-> name Memory segment name
-> size Size of memory in bytes. By default, 256.

assign Assign an instruction to a certain opcode prefix.
-> opCodePrefix Bit string denoting opcode prefix.
-> instructionName Name of instruction: a method stub will be created by this

name.
-> parameters Collection of parameter names and the number of bits each

parameter uses. By default, unset.
-> description Text description used in comments and generated documenta-

tion

assignBlind Assign an instruction to the first available opcode prefix of
maximal length.

-> instructionName Name of instruction: a method stub will be created by this
name.

-> parameters Collection of parameter names and the number of bits each
parameter uses. By default, unset.

-> description Text description used in comments and generated documenta-
tion

Table 2: Description of opcode interpreter DSL keywords and their parameters
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Code Snippet 3 Configuration steps of the example OCI in Figure 9: setting global prop-
erties, adding an extra memory segment, an extra register and assigning opcode prefixes to
instructions.
oci = OpCodeInterpreterModel(name = ’Example’,

counterSize = 1, # 8-bit program counter => 256 byte RAM
description = ’Example OCI’)

oci.mem(name = ’extraMem’, size = 256) # additional memory segment
oci.reg(name = ’extraMemPtr’, size = 1) # pointer which can fully access extraMem

# Assign instructions
oci.assign(opCodePrefix = ’0’, instructionName = ’a’)
oci.assign(opCodePrefix = ’10’, instructionName = ’b’, parameters = {’x’:1})
oci.assign(opCodePrefix = ’11’, instructionName = ’c’)

The instruction assignment process will raise an error in the following cases:

• Trying to assign to an opcode prefix already in use. For example, after an assignment
to 010, assigning an instruction to 0, 01, 010 or 010 . . . would give an ambiguous
interpretation.

• If the model is not complete upon finalizing it (there are uncovered possible opcodes).

5.5.2 DSL templates

Template files represent the structure/formatting of output files, to be populated with vari-
ables from the model upon rendering. We define the following templates:

• The stub of the opcode interpreter - A header and class file containing properties for the
RAM, memory segments and registers, along with the low-level conditional statements
which deduce the next instruction by reading and parsing values from the RAM. This
file is always overwritten upon regeneration. Code Snippet 4 shows the relevant lines
of the header when using the example OCI seen in Figure 9.

• The child opcode interpreter - A second source file containing the skeletons for the
assigned instructions. Our DSL only does the mapping to the instruction name, the
instruction’s logic is written afterwards. This file is not automatically overwritten upon
regeneration, since the instructions’ logic is added by hand.

• Wrapper - A Python wrapper for the class seen above (details on tooling can be seen
in Appendix B).

• Hypertext descriptions of the instruction set - Optional description tables of the in-
struction set given in HTML or LaTeX format, the latter of which is used in Appendix
C.

Using the separation of model and template allows simple alterations. For example,
moving the OCI over to another programming language can be achieved by adding new
templates, but using the same model.
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Code Snippet 4 Relevant lines of output for the C++ header generated from the example
OCI. External classes may feed it genetic strings with the size given in the macro in the first
line, interpret the program, then recall the output using a getter.
#define EXAMPLE_GENETIC_STRING_SIZE 522

/**
* Class for op-code interpreter Example

* Description: Example OCI

*/
class ExampleOci
{
public:

ExampleOci(unsigned int maxCommands, unsigned int maxOutputs, bool haltAllowed);
~ExampleOci();

/**
* Sets condition of VM using a genetic string (stored in inp).

*/
void setFromGeneticString(unsigned char* inp, int inp_size);

/**
* Interpret RAM commands.

* Reads bytes from where program counter points, and executes the mapped instructions.

* Stops if halt flag set or if a maximum number of commands/outputs reached.

*/
void interpret();

/**
* Recall current output.

*/
void output(unsigned char* outp, int outp_size);

// ===================================
// assigned states - main instructions
// ===================================
void a(); // 0 -
void b(unsigned char x); // 10 -
void c(); // 11 -

private:

unsigned char _counter; // program counter
unsigned char* _registers; // general-purpose registers
// additional registers
unsigned char _extraMemPtr;

unsigned char* _ram; // RAM
// additional memory segments
unsigned char* _extraMem;

unsigned char* _output; // output memory block
unsigned int _outputPtr; // output write pointer

};
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6 The musical model

The algorithm’s phenotype represents a piece of music (musical model); it is a set of tracks,
each consisting of a set of notes. Each note has the following properties:

1. Inter-onset interval (IOI) - The time elapsed between the onset of the previous and
current note in a track. For the first note in a track, it is the time between the beginning
of the piece and the note onset. The unit of measurement for this property (called a
tick) is mapped to sheet music time using the global property ticksPerQuarterNote and
this is mapped to real-world time using the global property quarterNotesPerSecond. In
our tests, we use 4 ticks per quarter note (the unit is a 16th note) and 120 BPM.

2. Onset - The absolute point in time of the note onset.

3. Offset - The absolute point in time of the note offset. IOIs and durations fully represent
the timing of a note, onset and offset are included only for auxiliary analysis methods.

4. Duration - Time elapsed between the onset and offset of the note.

5. Pitch - A numeric value representing the note’s pitch between 0 and 127, mapped to
the same pitches as defined in the MIDI1 protocol. The value 69 is associated with the
440Hz concert A, an increase or decrease of one unit representing a pitch rise or fall
of one semitone respectively.

6. Velocity - The volume (intensity) of the note between 0 and 127. Our current experi-
ments always use velocity 127 because of the chosen corpus (see Section 7.1).

Figure 10 shows an example of a track containing 2 notes; it is represented by an instance
of the class Track containing a 2-D matrix with 6 rows and n columns where n is the number
of notes in a track.

A musical model consists of a set of tracks. It cannot be encoded as a single 3 dimen-
sional matrix since different tracks may have a different note count. Therefore the class
Model contains a collection of Tracks.

1Musical Instrument Digital Interface

Note 0 Note 1
Inter-onset

0 2 (8th) . . .intervals
Onsets 0 2 . . .
Offsets 2 4 . . .

Durations 2 (8th) 2 (8th) . . .
Pitches 50 (D3) 52 (E3) . . .
Velocity 127 127 . . .

Figure 10: A track from a musical model. Each column represents a note with six properties
(rows).
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track

{track 0
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0x02 0x02 0x350x00

0x00 0x04 0x3B0x01

Figure 11: The model builder turns a byte array into a musical model by taking 4-byte chunks
and adding a note to the model based on the chunks’ values. The first byte denotes the track
index and the next 3 are the note properties.

6.1 The model builder

The ModelBuilder class transforms any byte array into a musical model. It segments the
input into 4 byte chunks, each representing a note. It uses the first byte to determine the track
index and the remaining 3 for the note properties (see Figure 11). Velocity can be included
optionally by setting the flag velocityEnabled (in which case 5 bytes are read per note);
we do not use it in our current experiments because of the chosen corpus (see Section 7.1).

The model builder class contains the following properties:

1. numTracks - Number of tracks in the output model. The incoming byte representing
the track index is masked to constrain this value.

2. omitZeroDurations, omitZeroPitches, omitZeroVelocities - Flags which in-
dicate ignoring a note if a relevant property is 0. In our experiments, all of these flags
are set. IOI is not included as a flag, since an IOI of 0 represents multiple notes played
in unison.

3. ioiMask, durationMask, pitchMask, velocityMask - Numbers used to mask
incoming bytes when setting note properties; used to constrain their values. In our
test cases, we constrain the IOI and duration of each note to a maximum of 16 (the
longest possible note is the whole note) and the pitch to 128 (to comply with the MIDI
standards).

Our algorithm feeds the output of the virtual machine into the model builder, conclud-
ing the two-step process of phenotype rendering: building a musical model from a genetic
string.

6.2 MIDI support

Our musical model is largely based on the MIDI format (Stansifer), therefore converting it
to a MIDI file becomes a straightforward task. The application supports importing/exporting
of any Model instance object to/from a MIDI file. We use this functionality in the following
cases:
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Figure 12: A piano roll example of a model with overlapping notes; this case shows a sub-
stantial difference between the MIDI and our model representation, since NOTE_OFF events
occur between the NOTE_ON events in a different order.

1. Our corpus is attached in the MIDI format (see Section 7.1 and Appendix A), therefore
we can import it to our own representation for easier comparison (see Section 7.4).

2. The application creates and analyzes the musical models, but does not support play-
back at this time; therefore exporting to MIDI allows users to listen to the results using
an external music player.

We define a model directory as a collection of musical models which can be imported
from/exported to a set of MIDI files within the same physical directory. Given a path, the
ModelDirectory class reads all MIDI files and transforms them into our model represen-
tation. The set of models may be altered and saved once again as MIDI files. A model
directory is used to represent our corpus (details in Section 7.1).

The MIDI protocol is event-based; tracks contain a series of events holding the delta time
since the previous event. This is similar to our approach since we use IOIs as the elapsed
time since the previous note onset. However, a MIDI note is defined by a separate NOTE_ON

and NOTE_OFF event with the same pitch. Therefore the information about one note is stored
in multiple events (possibly more than 2 in the case of overlapping notes). This differs
from our approach since we store note durations, making all information regarding a note
available in one column of the model matrix. This difference highlights the reason for using
a representation different from MIDI for our phenotypes.

Figure 12 shows a model with overlapping notes that emphasizes the difference between
the 2 representations. The IOIs of this model using our representation would be {0, 2, 1, 3}
while the delta times between MIDI events would be {0, 2, 1, 1, 1, 1, 1, 1}
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6.2.1 Importing MIDI files

The MidiReader class performs the transformation of MIDI event lists to a musical model
using the following steps:

• The global properties for number of tracks and the ticks per quarter note are read in
advance.

• The first MIDI track is discarded, since it only contains meta events.

• For each remaining track we:

1. Initialize a read pointer at the first event of the track.
2. Find the next NOTE_ON event: this will constitute the onset of a new note. The

IOI of the note is the aggregate delta times of all events from the read pointer to
the event. The read pointer is increased.

3. Attempt to find a NOTE_OFF event with the same pitch. The duration of this note
is the aggregate delta times of all events between the NOTE_ON and NOTE_OFF

events. If no event is found with the same pitch, we assume the note to last until
the end of the track, i.e. its duration is the aggregate delta times of all events after
the NOTE_ON.

4. Repeat steps 2-3 until no more NOTE_ON events are found.

6.2.2 Exporting MIDI files

The MidiWriter class performs the transformation of a musical model to a set of MIDI
events. This transformation must retain the correct order of NOTE_ON and NOTE_OFF events.
For example, Figure 12 shows a model with overlapping notes where the order of offsets is
not identical to that of the onsets (the first note ends after the second and third notes).

To ensure the correct order of events and retain linear parsing of the model, we introduce
a note queue object (class: NoteQueue). This queue holds the notes whose NOTE_ON events
have been added to the MIDI output, but not yet their NOTE_OFF events. Along with each
note, it stores the onset and offset time relative to the time pointer. The following operations
are defined:

• dequeuing a note - return the note with the smallest relative offset time (not to be
confused with dequeuing in a FIFO queue);

• delaying the queue - reduce the relative onset/offset of each note in the queue by a
fixed number; this process represents the increase of the time pointer.

The transformation steps are as follows:

• The first MIDI track is added containing a single meta event: a tempo setting of
120BPM (we currently do not support different tempos).
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• A MIDI track is added for each model track. The events are built using the following
steps:

1. A track name meta event is added.
2. An empty note queue is initialized.
3. We enqueue the next note, setting its relative onset to its IOI and its relative offset

to the sum of its IOI and duration.
4. We dequeue all the notes whose relative offset is smaller than the relative onset

of the current note (its IOI). For each read note, we add a NOTE_OFF event using
the relative offset as the delta time, and delay the note queue with the same value.

5. A NOTE_ON event is added for the current note and the queue is delayed with its
relative onset.

6. We repeat steps 3-5 for each note in the model track.
7. The note queue is flushed, i.e. step 4 is performed for all remaining notes.
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7 Corpus-based Similarity Tests

The fitness of any rendered phenotype is determined by a series of similarity tests. As men-
tioned in Section 3.1, all tests aim to evaluate how statistically similar a model is to the
models in the corpus. This allows a large space of phenotypes to achieve high scores on the
tests, not just the ones identical to a member of the corpus.

Here we take a holistic approach to building these tests, i.e. we test fundamental proper-
ties of our models instead of properties specific to music theory. We wish to find out whether
looking only at the fundamental distributions’ similarities allows the system to converge to-
wards musical traits without the need to specifically test for them. This approach allows us
to keep the generic aspect of this algorithm, so non-musical models may also benefit from it.

We define two types of tests: those revolving around a single property, such as total
duration or number of notes per track, and those revolving around statistical property distri-
butions.

7.1 Chosen corpus

We have chosen Bach’s Inventions and Sinfonias, comprising 30 keyboard exercises, as our
corpus. This catalogue of musical pieces was chosen for the following reasons:

• Relatively short pieces of equal length - For this research, we wish to test if, given
a corpus of short pieces, our system will converge to create pieces of similar length.
Using this constrained length can help demonstrate that our algorithm finds the appro-
priate solution subspace where pieces of these lengths live.

• Constant tempo - We have not included tempo as a property which changes within the
models (it is preset to 120 BPM) and we do not test for it.

• Similar style - Stylistically, all pieces of the corpus are similar in phrasing and prop-
erty distribution. By using them, we once again limit our solution subspace and test
whether or not the algorithm can find it.

The corpus has been extracted from a set of MIDI files2 and are included as supporting
material for the current work (see Appendix A). The pieces have been generated from a score
rather then recorded by a human player. As a result they contain no musical expression such
as changes in dynamics and tempo (e.g. all notes have velocity 127). For this reason, we do
not configure velocities of notes when using the model builder.

The corpus pieces all contain a single track of polyphonic music. We have performed the
following transforms to the pieces before running our tests:

1. Adapting the ticks per quarter note - As mentioned in Section 6.1, we use the 16th note
as our unit for a tick. The MIDI files used a different value for this property, therefore

2Downloaded from www.midiworld.com/bach.htm; last download date: February 2015
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the property has been changed and all note onset/offsets have been adapted to retain
the tempo.

2. Separating the corpus into 2 tracks - All pieces have been separated into 2 tracks based
on their pitch (see Section 7.6). This allows a comparison of the algorithm’s results
when using a single and dual track corpus that does not differ in musical content, but
allows evaluation of statistics across multiple tracks (see Section 8.2).

The different versions of the corpus are stored in different directories (see Appendix A)
and the algorithm allows the configuration at startup of which corpus to use (see Section 6.2
and Appendix B).

7.2 Normal distribution tests

In our first corpus-based tests, we evaluate two single-value properties of a model: the total

duration and number of notes per track.
To test similarity, we assume a normal distribution for both properties. The NormalFitnessTest

class extends FitnessTest and, given a mean µ and deviation σ, evaluates incoming values
using the following equation:

Nµ,σ(x) = e−
(x−µ)2

2σ2 (7)

It omits the scaling by 1
σ
√

2π
used in the PDF of a normal distribution so an output of 1

(perfect grade) is possible. This results in the area under the curve not summing to 1, but
this is not problematic since we are using this normal as a reference, not as a distribution we
sample. ∫ ∞

−∞
Nµ,σ(x)dx 6= 1 (8)

Nµ,σ(µ) = 1 (9)

The NormalFitnessTest class can also evaluate multiple normals at once. Given a
vector of means µ, deviations σ and an input vector x, all of size D, the class outputs a
single numeric value: the average grades from each normal.

Nµ,σ(x) =
1

D

D−1∑
i=0

e
− (xi−µi)

2

2σ2
i (10)

When evaluating a multitrack model’s length, only the global length is involved (D = 1);
we do not examine the length of each track individually. The number of notes is assessed on
each track, i.e. D = nt where nt is the number of tracks. Therefore, analyzing the corpus
on the algorithm’s startup is equivalent to measuring the mean and deviation of the overall
lengths and the individual number of notes. Both tests will return only one numeric grade,
therefore the number of normal tests does not depend on the number of tracks in the input.
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Figure 13: Deduced normal distribution test for musical model length. The length distribu-
tion for the pieces in the corpus (histogram bars) determines the grading schema we use for
input models. The thick overlaid line shows the deduced normal curve.

This allows us to use the same importances for tests regardless of the number of tracks (more
details in Section 7.6 and 8.1).

The presented 2 normal tests constitute the first two tests in our similarity test container.
Figure 13 shows the deduced normal of the length test and the histogram of the lengths of
the single track corpus, to show the correlation.

Since both the lengths and note counts are integers, the NormalFitnessTest class pre-
calculates all values of the normal from 0 to 2µ and stores them in a list. Incoming values
are evaluated simply by looking up the appropriate value in the list, returning 0 if the input
is below 0 or above 2µ. This results in a significant performance improvement.

7.3 Model descriptors

Instead of comparing the musical pieces directly, we measure the correlation of their statis-
tical properties. These properties are obtained using a series of transforms which yield the
descriptor of a piece. The remainder of our tests look at similarity between the descriptors
of the input and that of the corpus.

The transforms are applied to the IOI, duration and pitch of an input model. Onset/offset
have been omitted because IOI and duration fully represent the time axis of a model; velocity
has been omitted since it is always constant. Each of the 4 transforms gives a size 128 result;
this results in a descriptor being a matrix with 128 columns and 4ntnp rows, where nt is the
number of tracks and np is the number of tested properties (in this case, 3).

The transforms presented in the following subsections were chosen based on the musical
qualities they may intuitively represent.
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Figure 14: The mean pitch histogram of all
members of the single track corpus. The
histogram shows no notes outside a certain
mid-range.
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Figure 15: The mean pitch differential his-
togram of the single track corpus. Measures
the distribution of the rate of pitch change
between consecutive notes.

7.3.1 Histogram

The first descriptor row is populated with the input data’s histogram: the distribution of
different values. Given an input x[n] of size N , the histogram is given by

hx[v] =
N−1∑
n=0

{
1 if x[n] = v

0 otherwise
(11)

We measure the discrete histogram values from 0 to 127, since every property in our
model is a positive integer no larger than 127. The test measuring the correlation of the
histogram row rewards high similarity of distribution. To visualize the intuition, Figure 14
shows the mean pitch histogram of all members of the single track corpus. It shows no
energy outside of a mid-range interval, which shows that real-world pieces are constrained
to a certain pitch range. Therefore the test will penalize digression from this rule.

To widen the search space, the histogram shown in Figure 14 is not the only one we
measure similarity to; instead we use clustering to find K representative histograms of the
corpus (see Section 7.5).

In a multitrack case, the descriptor would contain separate rows for each track and there-
fore would reward per-track similarity (see Section 7.6). This mimics the real-world multi-
instrumental pieces, where separate instruments’ notes often lie in different pitch ranges or
the two hands of a pianist cover different areas of the keyboard.

The intuition can be extended to the other properties as well. For example, testing simi-
larity in IOI and duration distributions could highlight the tendency of bass line sparsity: the
track assigned to the bass line plays fewer and longer notes.
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7.3.2 Histogram of first differential

Histograms focus only on property distribution and therefore ignore the notes’ temporal
locations. The histogram of the first differential accounts for the immediate rate of change
in time. In real music, consecutive notes in a track rarely have large jumps between extrema
in any property. The similarity test of this transform therefore discourages large changes of
a property from one note to the next.

h∆x[v] =
N−1∑
n=1

{
1 if x[n]− x[n− 1] = v

0 otherwise
(12)

We measure the signed rate of change, therefore we sample h∆x between -64 and 63,
resulting once again in 128 values. Figure 15 shows the histogram of the differential of
the pitches in the single track corpus. Similarly to the pitch histogram, it shows the rate of
change constrained between a fixed range, therefore the associated test will discourage quick
jumps from very high to very low notes and vice versa. The histogram shows a very small
value for h∆x[0]; we can deduce that keeping the pitch constant throughout consecutive notes
occurs rarely in the corpus and is discouraged in our models.

The keyboard exercises in our corpus are played with two hands, but our analyzed data
is a merged list of notes. This results in many consecutive notes from different hands, which
intuitively show a large pitch jump. This results in the energy in the Figure located around
±16. The symmetry also arises from the hand changes, since every left-to-right transition is
met with an opposite right-to-left one (more details in Section 7.6).

7.3.3 Spectrum

First differential histograms only account for immediate temporal changes and thus ignore an
important musical quality: repetition. Real music is often characterized by the reoccurrence
of small motifs or larger segments. The Fourier transform of the properties highlights these
repetitions and its similarity test penalizes the models with no segment reoccurrence. The
discrete Fourier transform is defined as:

Xx[k] =
N−1∑
n=0

x[n]e−ink
2π
N (13)

The number of notes N is not known in advance; it depends on the number of output
commands occurring in the genetic string interpretation. Therefore we input a zeropadded
version of the note properties using N = 2048; any input above this size is truncated. Since
the normal test related to the number of notes (see Section 7.2) gives 0 for anything above
2µ, we have chosen N as the first power of 2 above the cutoff value.

N = 2dlog2(2µ)e (14)
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Figure 16: Spectrum analysis example. The left image shows the piano roll representation of
input notes, while the right shows the result. We omit Xx[0] and measure only the repetitions
with frequencies in (0, π]. In this case, 4 notes are repeated in a sinusoidal pattern, resulting
in spectral energy at 2π

4
. The input has been tiled to avoid side lobes of Xx[0] caused by

zero-padding.

The mean number of notes in the corpus is µ = 633.5, resulting in N = 2048. The
maximum number of notes is also influenced by the VM’s maxOutputs property, which is
also set not to exceed 4N (since 4 bytes are used per note; see Section 5.3 and Section 8.1).

Our input to the Fourier transform is real, resulting in a Hermitian symmetric output.
Therefore the spectrum is fully represented by the first N

2
+ 1 values. We subsample the

spectrum to a size of 256; this results in all relevant information being stored in 129 values.
This is 1 more than the size of a row in our descriptor.

The spectrum in k = 0 represents the sum of all values:

Xx[0] =
N−1∑
n=0

x[n]e−in0 2π
N =

N−1∑
n=0

x[n] (15)

Our input contains exclusively positive values, therefore Xx[0] will always be dispropor-
tionately larger than all other values in the spectrum. It also contains no information about
repetitions; only the constant needed to retain energy. Since we only use the spectrum for
repetitivity analysis (no synthesis), we can safely discard Xx[0], resulting in 128 values we
store in the descriptor row.

Figure 16 shows a Fourier transform example using a series of notes with a sinusoidal
pattern. In this case, 4 notes are repeated in this pattern, which results in spectral energy at
a period of T = 4, i.e. at a digital frequency of ω = π

2
. The transform always relies only

on one property (in this case, pitch); therefore using different IOIs/durations would still give
the same result.

The sinusoid’s amplitude is 2 and it is centred around the pitch value 62. Therefore, if we
had not omitted Xx[0], it would have energy 31 times larger than the peak of the repetition,
distorting the information we are really looking for in the spectrum. On the other hand, this
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Figure 17: The inter-onset interval spectrum of the first member of the single track corpus.
The diagram shows peaks at periods of 2 and 3, favouring patterns of length 3. Models
showing a similar repetitivity score high on the similarity test associated with this property.

omission discards the centre pitch; notes with the same sinusoidal pattern around any other
pitch value would give the same results.

Figure 17 shows the IOI spectrum as measured for the first member of the single track
corpus. It shows 2 distinct peaks at ω = 2π

3
and ω = 2π

2
, which represent periods of T = 3

and T = 2, respectively. This analysis shows a tendency of repeating short IOI patterns. The
peak at T = 3 is larger, showing there are more repeating patterns formed of 3 notes than
there are formed of only 2.

7.3.4 Spectrum of first differential

The last property we include in the descriptor rows measures the repetitivity of the rate of
change within a property. We measure this property identically to the simple spectrum.

X∆x[k] =
N−1∑
n=1

(x[n]− x[n− 1])e−ink
2π
N (16)

The 4 presented transforms are measured for IOI, duration and pitch, resulting in 12nt

descriptor rows and therefore 12 grades.

7.4 Descriptor correlation tests

Comparing 2 descriptors is performed using the Pearson correlation coefficient (r) (Rummel,
1976). Correlation is measured row-by-row, so different importances can be assigned to the
correlation of different properties. The results are averaged across tracks, resulting in 4np

(in this case, 12) grades.
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Given the ith lines from descriptors D and E, denoted by Di and Ei, and their mean
values denoted by D̄i and Ēi, their correlation coefficient is given by the following equation:

rDi,Ei =

∑127
i=0(Di − D̄i)(Ei − Ēi)√∑127

i=0(Di − D̄i)2

√∑127
i=0(Ei − Ēi)2

(17)

The resulting coefficient always lies between −1 and 1. Positive values imply positive
correlation, negative values imply negative correlation and a value of 0 implies no correla-
tion. In our tests, we return 0 for negative values because we do not wish to obtain negative
fitness scores. This approach allows us to return grades between the values of 0 and 1 without
having to normalize the descriptors themselves.

7.5 Corpus clustering

We have defined correlation between two descriptors but our corpus consists of 30 different
musical models, all of which have a different descriptor. Therefore a method must be used
to incorporate the data from all 30 corpus members into the test. To verify how well this
incorporation works, we evaluate the members of the corpus themselves using our tests.
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Figure 18: Testing an incoming model against the corpus
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Figure 19: Descriptor similarity test results of the single track corpus for different numbers
of clusters; the models have been sorted by correlation when using K = 1.

A possible reference descriptor could be the centre of all descriptors from the corpus
(Figure 18b). This would be a single niche (Mahfoud, 1995) within our solution space.
Experimenting with this approach reveals that testing the corpus itself gives relatively small
grades (between 65 and 82%). This suggests that taking just one niche narrows down our
solution space so much that even the corpus cannot achieve a high enough grade.

Another possible approach is to use all corpus members as niches, i.e. measure an input
model’s correlation to each of the corpus members and take the maximum value (Figure 18c).
In this case, all corpus members score 100%. However, this can become computationally
expensive, and might broaden the solution space too much.

To obtain the best of both approaches, we cluster our corpus, partitioning the descriptors
into K subsets (Figure 18d). Afterwards we can use the centres of these clusters as reference
descriptors, and test for the maximal correlation with a centre.

The clustering happens offline, before the evolutionary algorithm starts. It only needs
to be done once therefore we do not have to worry about the computational expense. We
use K-means clustering (Jain and Dubes, 1988) substituting the typically used geometrical
distancing with correlation.

We denote the input as x with size N to be clustered into K subsets (K ≤ N ). Using the
correlation r as defined in Equation 17, the steps of the clustering algorithm are as follows:

1. Define the cluster centres as the first K descriptors:

µk = xk for each k ∈ {0, . . . , K − 1} (18)

2. E-step: Classify each descriptor into one of the K partitions by taking the maximal
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correlation (instead of the minimum distance):

cn = argmax
k

rxn,µk for each n ∈ {0, . . . , N − 1} (19)

3. M-step: Find the new centres of gravity by taking the mean descriptor of each partition.
Assign these as the new cluster centres:

µk = mean
cn=k

xn for each k ∈ {0, . . . , K − 1} (20)

4. Repeat steps 2-3 until no change occurs between iterations, or the number of steps
reaches a maximum value (to avoid infinite oscillation).

5. Return cluster centres µk and which cluster each input is classified to (cn).

This approach allows the flexibility of changing the value of K between runs. The two
methods proposed initially can also be achieved by setting K = 1 or K = 30, respectively.
Figure 19 shows the achieved grades of the corpus using different values for K.

7.6 Using a multivoice corpus

We explore the differences between using single and multitrack corpora. The Bach keyboard
exercises (also used in Sulyok et al. (2015)) all comprise single track pieces. Including a
second corpus for multitrack experimentation may dilute the results because of the different
distributions/lengths/meters. The ideal way to omit result discrepancies due to these differ-
ences would be to include the same corpus in both single and multitrack versions.

Our corpus only uses one instrument but the keyboard is played using two hands. The
notes played by the left and right hand could be placed into different MIDI tracks to simulate
2 different instruments. Therefore we attempt to separate our MIDI files into 2 tracks to
create a second version of the same corpus.

Previous works on MIDI separation were based on separating pieces into contigs which
are regrouped based on pitch proximity (Chew and Wu, 2004); using a learned decision
tree (Kirlin and Utgoff, 2005); real-time separation based on pitch proximity (Madsen and
Widmer, 2006); or Kalman filtering (Hadjakos and Lefebvre-Albaret, 2009).

We however opt to once again use a clustering mechanism to reuse many steps seen in
Section 7.5. The number of clusters is defined as K = 2 and the properties of interest are
pitch and onset time. Since we need a cluster separation point at every point in time, we do
not view the space of interest as a 2-dimensional space with 1 dimension for pitch and 1 for
time. Instead, we perform clustering only on pitches, taking onset time as a weighting factor
when calculating distances from a centre. Therefore there will always be a separation point
in time above which notes are assigned to 1 cluster and below which they are assigned to the
other.
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Figure 20: Example of the 2 iterations of the pitch clustering algorithm using a simple ex-
ample. The plots show a piano-roll style representation.

Given x is the note pitches and t is the note onsets, the adapted algorithm steps are:

1. Start out with a separation point in between the maximum and minimum pitch in the
input:

cn =

0 if xn ≤ 1
2

(
max
m

xm + min
m

xm

)
1 otherwise

(21)

2. Build the log-normal shaped weights used for onset differences: w(∆t). The mean
of the log-normal gives the time difference under which we assume notes played in
unison (which should be separated) and the variance allows control of the weighting:
how much onset difference still impacts the classification of a current note.

3. Combine the E-step and M-step since now there are no cluster centres; distancing is
based on the onset differences:

cn = argmin
k

∑
cm=k (|xn − xm| × w(|tn − tm|))∑

cm=k w(|tn − tm|)
(22)

4. Repeat step 3 until there is no change or maximum number of iterations is reached.

Figure 20 shows an example of the separation process for a small example. In the first
iteration, the mid point between the minimum and maximum pitch is used to separate the
notes. This gives unintuitive results for the first and last notes. In the second iteration, the
onset weighting allows the closer notes to rectify this.

Figure 21 shows the resulting pitch histograms of the original and the resulting dual track
corpus. Two disjoint pitch ranges have emerged for the cluster members with a small overlap
in the middle. The right subfigure shows the histogram of the first differential of pitch. The
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(b) Histogram of first differential of pitch

Figure 21: The mean histograms of pitch and pitch differential of all members of the single
and dual track corpora. The 2 tracks of the dual track corpus show a different pitch range,
but they add up to the single track one, since they comprise the same notes. Much of the
energy in the differential is lost after separating the corpus, since hand changes are no longer
included.

two overlaid plots of the dual track corpus cover a much smaller range than the single track
one. Much of the energy at around ±16 is lost due to not including the jumps from left hand
to right hand and vice versa.
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8 Experiments & results

Our experiments explore the space of possible parameters to measure the impact of changes.
The questions this exploration aims to answer is: “Which set of parameters gives the highest
grades consistently?”, “Which set of parameters gives a good tradeoff between performance
and high grades?” and “Which parameters help the grades accurately represent musical
quality?”.

8.1 Tested configurations

For each set of parameters, we have run 20 different tests, each time allowing the algorithm
to reach a target of 20000 generations. Common parameters include a survival probability of
15%, maximum age of 3, maximum cut point ratio of 0.1%, maximum mutation ratio of 2%,
number of corpus clusters of 5 and the VM halting conditions of 60000 commands or 2600
output bytes. The importances of the 14 similarity tests are also common (see Figure 22).

The following parameters differ in each test run:

1. the population size takes the values from {16, 32, 64, . . . , 1024};

2. the number of tracks in the corpus is either 1 or 2 using the different versions of the
same corpus as described in Section 7.1;

3. the VM instruction set is either immediate or indirect as described in Section 5.3.

This results in a total of 28 different configurations. Each run exports its state to disk
every 1000 generations, and the highest scoring models are also exported as MIDI and at-

Inner circle
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Hist differential (17.9%)
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Spectrum differential (4.5%)
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Pitch (22.4%, 11.9%, 6.0%, 1.5%)

Figure 22: The importances used in our tests: the inner circle separates the normal and
descriptor-based tests and the mid/outer circles categorize the descriptor-based tests by the
used statistical transform and the input model property, respectively.
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Immediate OCI Indirect OCI
Population Single track Dual track Single track Dual track

size Mean Max Mean Max Mean Max Mean Max
16 0.385 0.489 0.352 0.455 0.379 0.483 0.360 0.479
32 0.435 0.580 0.411 0.550 0.424 0.532 0.415 0.598
64 0.446 0.602 0.429 0.616 0.476 0.608 0.431 0.636

128 0.482 0.648 0.429 0.654 0.474 0.583 0.432 0.609
256 0.483 0.662 0.450 0.689 0.476 0.628 0.459 0.640
512 0.492 0.679 0.471 0.706 0.502 0.626 0.476 0.673

1024 0.504 0.667 0.490 0.757 0.513 0.641 0.514 0.732

Table 3: Mean and maximum grades of the populi in their last generation for each different
configuration, averaged over the 20 runs.

tached as supporting material (see Appendix A). This allows further analysis and listening
to the results.

One of the configurations is identical to our previous research (Sulyok et al., 2015) with
only the survival mechanism altered (see Section 4.4). The comparison of the results is
discussed in Section 8.5.

8.2 Overall results

Table 3 shows the mean and maximum grades of the last generations in each test run. Ana-
lyzing the results, we can draw the following conclusions:

• Larger population sizes result in both better mean and maximum grades (further dis-
cussed in Section 8.3).

• Using the dual track corpus results in smaller mean values for the populi, but larger
maxima (further discussed in Section 8.4).

• The inclusion of immediate addressing to the VM instruction set seems to make no real
difference in the results. The mean and maximum values show an average difference
of 0.5% and 2%, respectively.

8.3 Using different population sizes

The experiments show better grades emerging from larger population sizes. Even the 2
largest population sizes (512 and 1024) show a significant difference: a 2.8% and 2% rise
in maximum and mean grades, respectively. However, this exponential population size in-
crease also increases runtime exponentially, since all computationally expensive methods are
performed on each individual in a population.

Therefore we attempt to estimate if increasing the population size further would continue
to give significantly better results. Figure 23 shows the results in Table 3 averaged over all
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Figure 23: Maximum and mean grades at the last generation, averaged over all test runs. The
lines show an estimated curve fit over these samples, which deduce that further increasing
the population size would not give significantly better results.

configuration dimensions except the population size. Plotted over them is an estimated curve
fit to these target points using linear regression.

Intuitively assessing Figure 23, the curve seems to move in an inverse exponential manner
of shape

fα(x) = 1− α− log2 x (23)

where x is population size. We use its logarithm since our figure shows the X-axis on a
logarithmic scale. α determines the steepness of the curve. fα tends towards 1 for any
value of α strictly larger than 1, which further enhances its fitting, since our fitness tests are
constrained between 0 and 1.

lim
x→∞

fα(x) = 1, α > 1 (24)

Attempting to fit fα (finding the best value for α) to our data results in large errors. This
might signal that the algorithm, in its current form, is unable to reach 100% fitness with any
population. Therefore we attempt to scale the function:

gα,m(x) = m× (1− α− log2 x) (25)

gα,m therefore tends towards m, the hypothetical highest grade we can achieve with the
algorithm.

lim
x→∞

gα,m(x) = m, α > 1, 0 < m ≤ 1 (26)

Fitting gα,m separately for the mean and maximum gives adequately small errors: an
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x 1024 2048 4096 8192
gmax(x) 0.694 0.706 0.714 0.721
gmean(x) 0.495 0.501 0.505 0.508

Table 4: Estimated maximum and mean grades for higher population sizes.

average of 0.01 and 0.006 respectively. The estimated functions are:

gmax(x) = 0.743× (1− 1.313− log2 x) (27)

gmean(x) = 0.516× (1− 1.377− log2 x) (28)

This shows the algorithm as capable of reaching a maximum grade of 0.743 and a mean
of 0.516. Table 4 shows estimated values for gmax and gmean for higher population sizes.
The values suggest further exponential increase of the population size would not result in
significantly better results.

8.4 Single vs. dual track corpus

As mentioned in Section 7.6, the corpus members have been clustered into 2 tracks and sep-
arate experiments have been performed using the single and dual track versions. Figure 24
shows the resulting grade progressions averaged over all dimensions except the number of
tracks. The dual track corpus shows a slightly larger maximum but lower mean. Their pro-
gressions through the generations are almost identical, signalling that the number of tracks
does not impact the speed at which pieces are able to evolve.

The musical models in a population have the same number of tracks as the corpus used
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Figure 24: Mean and maximum grade progression over the generations when using single
and dual track corpus. The dual track corpus shows a slightly higher maximum, but lower
mean.
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Figure 25: Comparison of mean/maximum grade progression using guaranteed and prob-
abilistic survival. The left plot shows a previous iteration, while the right uses one of our
current runs with the same configuration. The results show a slightly smaller maximum but
a much larger mean, signalling that probabilistic survival allows a more diverse population
to emerge, with the cost of not allowing high-scoring but fragile units to survive.

in their associated run (see Section 6.1); their descriptor’s size is also proportional to it
(see Section 7.3). Therefore, when comparing 2 descriptors in the dual track case, we are
assessing correlation of data twice as large, intuitively making correlation more difficult to
emerge. The slightly lower means in the dual track case seem to confirm this intuition, but
the maximum grades are surprisingly higher.

8.5 Impact of survival mechanism

As mentioned in Section 4.4, the survival mechanism has been changed since our previous
research (Sulyok et al., 2015); unit survival is now based on chance rather than guaranteed
for the highest scoring units. We compare the results from our previous research to the
current one to measure the effects of this change. The configuration in Sulyok et al. (2015)
is identical to one of the current ones: using a single track corpus, a population size of 256
and allowing immediate addressing. The only difference is that 40 test runs were performed
in the previous iteration.

Figure 25 shows the side-by-side comparison of the previous results and the current ones
using the same configuration. Both plots show the progression of the maximum and mean
grades over the generations, averaged over all runs with the aforementioned parameters. The
maximum values seem to suffer a loss (the last generation’s values are 0.733 for the old and
0.662 for the new) but the mean grades show a significant improvement (0.324 for the old
and 0.482 for the new).

This indicates that guaranteed survival tends to single out one or more marginally favou-
rable units, who are always propagated through the generations. Since genetic strings are
fragile when faced with crossover/mutation (even a small change may drastically alter the
resulting musical model), guaranteed survival does not allow as much population diversity.
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(a) A single track result. It shows a small repeating pattern over the entire duration of the piece. The
time signature has been added manually to visualize the pattern.
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(b) A dual track result, where 2 different repeating patterns emerge on the 2 tracks. The motifs have
a different length (6 and 5 ticks), resulting in an interesting rhythmic pattern when overlaid.

Figure 26: Example results

Probabilistic survival will eventually block the survival of a unit whose genetic string is
strong on its own, but is too fragile when facing change.

8.6 Listening to the output

Examining the resulting MIDI files (see Appendix A) allows us to evaluate, albeit subjec-
tively, the musicality of the results. Their durations are almost universally within the bound-
aries dictated by the corpus statistics, although many achieve this with a smaller than desired
number of notes (i.e. the notes are on average longer or there are rests).

Some musical traits emerge in the results, especially related to repetition. Almost all
MIDIs contain motifs of a few notes repeated multiple times, and some show variation on the
repeated theme. The algorithm successfully finds “shortcuts”: small motifs consisting of a
few notes which, when repeated many times, approach the statistics of the corpus. However,
these results are not particularly musical (see example in Figure 26a), suggesting the need
for more restrictive tests.

Although repetition and variation emerge, other musical properties such as harmony,
melody or entropy are somewhat lacking. This suggests the need for further fitness tests
inspired by music-theory (see Section 9.1).

The multitrack results seem more musical than the single track ones. They also exhibit
small repeating patterns but these may easily have different lengths on the 2 tracks, resulting
in interesting rhythms when overlaid (see Figure 26b).

A collection of randomly chosen segments from our results can be found under Appendix
D.
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9 Conclusion

The space of possible music is vast, even when analysing only a few properties and omitting
synthesis and performance elements. Even then, there is no universal location of a “subspace
of good music”; it is a subjective evaluation. But the results in the field show promise; to date,
many musical pieces have been composed assisted by evolutionary algorithms. Waschka
(2007) has always viewed these algorithms as auxiliary tools for composer inspiration instead
of standalone virtual composers.

In this paper we have demonstrated a novel approach to evolutionary music composition:
evolving the composition process rather than the product. We have deviated from many of
the previous research in the area by incorporating elements of linear genetic programming
and by a novel approach to using corpora.

By using a Turing-complete virtual machine, we have successfully modelled a composer;
programs running on the VM represent the genotypes and the resulting musical pieces rep-
resent the phenotypes. This separation allowed us to model the vast space of possible music
indirectly using the instructions of the VM.

Unlike many of the previous approaches, we do not attempt to narrow this space by con-
straining parameters (e.g. using only pitches within a diatonic scale) or by setting favourable
initial conditions (e.g. using the corpus as the initial population). Instead, we give the virtual
composer freedom and attempt to guide his search. We have completed a first step in this
guidance by providing a set of niches: a corpus of real music. The algorithm is told that
musical pieces that are statistically similar to these pieces may be deemed “good”.

By exploring the space of possible parameters, we can conclude that 1024 is an optimal
population size, immediate addressing in the VM does not influence the results and that using
a multivoice context gives a more detailed description of the corpus and therefore helps more
interesting pieces to emerge.

Our results are promising, demonstrating that while this approach succeeds at converg-
ing towards the properties of the pieces in the corpus, is still only produces partially musical
results. Some traits such as repetition and variation do arise, but there is still much room for
improvement. In its current form, our algorithm may still be suitable for providing inspira-
tion to real composers.

9.1 Future work

The algorithm achieves high scores with very small motifs repeated many times, which dic-
tates the need for more restrictive tests, especially revolving around entropy. Examining the
similarity of entropy to the corpus could potentially force the evolution strategy to discard
these simplistic results and search in other directions.

The small recurrent motifs also suggest that only a small portion of the RAM is used in a
loop when rendering phenotypes. We propose the exploration of the number of bytes touched
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during interpretation; this may dictate the sufficiency of a smaller RAM size. A larger RAM
using only a small number of bytes may behave unpredictably when facing crossover: it
may have its active code either scattered throughout the genetic string, leading to substantial
changes on crossover; or clumped together in one segment, possibly leading to no change on
crossover. Besides changing the RAM size, the entropy tests may discourage the branching
instructions, increasing the number of used memory, diminishing the need for the change.

The results are also highly disharmonic and lacking a set metrical structure. We suggest
the future inclusion of similarity tests more inspired by music theory, such as rewarding the
emergence of a diatonic scale.

Even though we model the composer’s process as a linearly executed program running
on a processor, experimenting with classic tree-like genetic programming or with different
types of interpreters (e.g. based on functional programming) may reveal improvements.

Our current representation of the musical model is in function of note index, not time.
Transforming a model to a function of time would allow the inclusion of new tests, e.g.
measuring the similarity of number of notes played in unison at any time.

In a multivoice context, our descriptor correlation tests only measure the similarities per
track. Tests which measure overall statistics similarity might combine the strengths of the
single- and multitrack approaches.

Improvements could also be made by a different choice of corpus. Since the current one
had no musical expression, it would be interesting to explore what musical pieces played
by human musicians could teach our system to do. Incorporation of velocity into the model
properties would then allow us to test for accentuation and expressive tempo changes.
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A Supporting material

The public website associated with this research project can be found under: http://

csabasulyok.bitbucket.org/emc. The site contains a hall of fame: cropped MIDI re-
sults which exhibit interesting musical traits. It also hosts the results from our previous
research (Sulyok et al., 2015).

The current project’s source code is hosted online on BitBucket at the following URL:
https://bitbucket.org/csabasulyok/emc. Attached to this document is a snapshot of
the Git repository along with the current experiments’ highest scoring MIDI files (see folder
structure in Table 5) and a compiled distributable of the application (for Windows 7 x64).

Folder name Description
dist Compiled distributable of the application.

doc LATEX source code and figures for relevant documents
-> emc-common-img Common images used throughout the different documents
-> emc-proposal Project proposal
-> emc-specification Project specification
-> emc-report The current report
-> emc-pres The associated presentation

midi MIDI files of corpus members
-> bach_original The originally downloaded versions of the Bach corpus (see

Section 7.1)
-> bach_1track Single track version of the corpus
-> bach_2track Dual track version of the corpus (processed as seen in Section

7.6)

results MIDI results of current experiments
-> random Random MIDI files sampled from highest scoring models in-

cluded in Appendix D

src Python/C++ source folder
-> emc-framework Abstract genetic programming framework (see Section 4)
-> emc-example Example application of framework (see Section 4.5)
-> emc-vm Opcode interpreter generator with models and templates (see

Section 5.5).
-> emc-cpp C++ sources for computationally expensive steps of the algo-

rithm (e.g. opcode interpreter, model builder, descriptor).
-> emc-core Main Python project

Table 5: Folder structure of supporting material

The MIDI result files hold configuration information in their name. For example, the file

emc_ociImmediate_multiTrack_pop0128_time20150708-203840_gen19999_score0.684

is the highest scoring unit from a run using the immediate VM instruction set, the dual track
corpus and a population size of 128. Only files from the last generation have been included.
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B Tools and build management

The following tools have been used in development:

• Code implemented using WinPython 2.7.9 and Visual C++ 9.0;

• IDE: Eclipse Kepler CDT with PyDev 3.5 and TeXlipse 1.5;

• Version control: Git 1.9.4

The project uses the following external libraries:

• SWIG/distutils - used to compile our C++ code for Python compliance (Sauvage,
2003);

• Django - web framework used for template rendering in the OCI generator (see Section
5.5);

• midiparse - a Python library for MIDI import/export 3;

• Numpy.i - a SWIG library for NumPy support 4

• FFTW 3 - C++ FFT library used in descriptor building (see Section 7.3).

The main entry point of the algorithm is src/emc-core/src/emc/demo/algrun.py.
This file contains the default configuration of a run. Each configuration can be overwritten
by a command-line argument in the shape key=value (see possible arguments in Table 6).
The algorithm can also be started from the Eclipse launcher emc-algrun.

A distributable of the algorithm can be built using the Eclipse launcher emc-dist which
uses py2exe. A compiled distributable for Windows 7 x64 is included in the supporting
material and can be launched using emc.exe. Help about command-line arguments may be
queried using emc.exe -h.

3Downloaded from https://github.com/blob8108/kurt/blob/master/examples/midiparse.py;
last download date: February 2015

4Downloaded from https://github.com/barbagroup/pygbe/blob/master/util/numpy.i; last
download date: December 2014
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Name Default value Description
corpusPath ’corpus/bach_2track’Folder containing corpus MIDI files.

numClusters 5 K - number of corpus clusters (see Section 7.5)

ociClass immediate Python class name of OCI interpreter. The gen-
erated Python wrapper for the C++ class must be
used (see Section 5.5).

maxCommands 60000 Maximum number of VM instructions to be exe-
cuted before halting

maxOutputs 2600 Maximum number of VM bytes to be output before
halting

numUnits 256 Population size

maxAge 3 Maximum times any unit may be survived (see
Section 4.4)

survivalProb 0.15 Weight of survival probability applied to overall
grades (see Section 4.4).

targetGeneration 20000 The algorithm will run until it reaches this target
generation.

numberOfRuns 1 How many times the algorithm shall be run. Used
to link multiple runs together sequentially.

outputDir ’./output’ Folder to store output models/MIDI files.

loggingCycle 50 The algorithm will print status information to the
console every loggingCycle generations.

cycleSize 250 The algorithm will save the status of the algorithm
together with the best MIDI file every cycleSize

generations.

Table 6: Possible command-line arguments of application
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C Opcode interpreter instruction sets

C.1 The immediate opcode interpreter

Opcode
prefix

Instruction
name

Params Description

00000 movR_DH r:3 Copies high byte of dataPtr into given register.

00001 movDH_R r:3 Copies value of given register into high byte of

dataPtr.

00010 movR_DL r:3 Copies low byte of dataPtr into given register.

00011 movDL_R r:3 Copies value of given register into low byte of

dataPtr.

00100 movR_DPtr r:3 Copies 1 byte from memory where dataPtr

points, into given register.

00101 moviR_DPtr r:3 Copies 1 byte from memory where dataPtr

points, into given register, and increases

dataPtr.

00110 movDPtr_R r:3 Copies value of given register to the memory

where dataPtr points.

00111 moviDPtr_R r:3 Copies value of given register to the memory

where dataPtr points, and increases dataPtr.

01000 movR_Next r:3 Copies next byte after call into given register.

01001 movR_A r:3 Copies acc into given register.

01010 movA_R r:3 Copies given register into acc.

01011 xchA_R r:3 Exchanges values of acc and given register.

01100000 movA_DH Copies high byte of dataPtr into acc.

01100001 movA_DL Copies value of acc into high byte of dataPtr.

01100010 movDH_A Copies low byte of dataPtr into acc.

01100011 movDL_A Copies value of acc into low byte of dataPtr.

01100100 movA_DPtr Copies 1 byte from memory where dataPtr

points, into acc.

01100101 moviA_DPtr Copies 1 byte from memory where dataPtr

points, into acc, and increases dataPtr.

01100110 movDPtr_A Copies value of acc to the memory where

dataPtr points.

01100111 moviDPtr_A Copies value of acc to the memory where

dataPtr points, and increases dataPtr.

01101000 xchA_DPtr Exchanges values of acc and the memory where

dataPtr points.
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Opcode
prefix

Instruction
name

Params Description

01101001 xchiA_DPtr Exchanges values of acc and the memory where

dataPtr points, and increases dataPtr.

01101010 movDPtr_Next Copies next byte after call into memory where

dataPtr points.

01101011 movDH_Next Copies next byte after call into high byte of

dataPtr.

01101100 movDL_Next Copies next byte after call into low byte of

dataPtr.

01101101 movA_Next Copies next byte after call into acc.

01101110 cplC Inverts value of carry flag.

01101111 inc_A Increments value of acc.

01110 inc_R r:3 Increments value of a given register.

01111 dec_R r:3 Decrements value of a given register.

10000000 dec_A Decrements value of acc.

10000001 inc_D Increments value of dataPtr.

10000010 dec_D Decrements value of dataPtr.

10000011 cplA Inverts value of acc bitwise.

10000100 anlA_Next Performs bitwise and between acc and next byte

after call.

10000101 orlA_Next Performs bitwise or between acc and next byte

after call.

10000110 anlA_DPtr Performs bitwise and between acc and memory

where dataPtr points.

10000111 orlA_DPtr Performs bitwise or between acc and memory

where dataPtr points.

10001 anlA_R r:3 Performs bitwise and between acc and given reg-

ister.

10010 orlA_R r:3 Performs bitwise or between acc and given reg-

ister.

10011 addA_R r:3 Adds value of given register to acc.

10100 addcA_R r:3 Adds value of given register to acc, with carry.

10101 subA_R r:3 Subtracts value of given register from acc.

10110 subbA_R r:3 Subtracts value of given register from acc, with

borrow.

10111000 addA_Next Adds value of next byte after call to acc.

10111001 addcA_Next Adds value of next byte after call to acc, with

carry.

10111010 subA_Next Subtracts value of next byte after call from acc.
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Opcode
prefix

Instruction
name

Params Description

10111011 subbA_Next Subtracts value of next byte after call from acc,

with borrow.

10111100 addA_DPtr Adds value of memory where dataPtr points to

acc.

10111101 addcA_DPtr Adds value of memory where dataPtr points to

acc, with carry.

10111110 subA_DPtr Subtracts value of memory where dataPtr

points from acc.

10111111 subbA_DPtr Subtracts value of memory where dataPtr

points from acc, with borrow.

11000000 rlA Rotates acc left with 1 bit.

11000001 rrA Rotates acc right with 1 bit.

11000010 rlcA Rotates acc left with 1 bit, using carry flag.

11000011 rrcA Rotates acc right with 1 bit, using carry flag.

11000100 pushDH Pushes high byte of dataPtr to stack.

11000101 popDH Pops high byte of dataPtr from stack.

11000110 pushDL Pushes low byte of dataPtr to stack.

11000111 popDL Pops low byte of dataPtr from stack.

11001000 pushA Pushes value of acc to stack.

11001001 popA Pops value of acc from stack.

11001010 sjmpNext Short jumps program counter with value of next

byte.

11001011 jmpNext Absolute jumps to memory address given by next

2 bytes.

11001100 jmpD Absolute jumps to value of dataPtr.

11001101 callD Pushes program counter, and then jmpD.

11001110 callNext Pushes program counter, and then jmpNext.

11001111 ret Pops program counter from stack.

11010000 jnc_D jmpD if carry bit is not set.

11010001 jc_D jmpD if carry bit is set.

11010010 sjnc_Next sjmpNext if carry bit is not set.

11010011 sjc_Next sjmpNext if carry bit is set.

11010100 jnc_Next jmpNext if carry bit is not set.

11010101 jc_Next jmpNext if carry bit is set.

11010110 jnzA_D jmpD if acc is not zero.

11010111 jzA_D jmpD if acc is zero.

11011000 sjnzA_Next sjmpNext if acc is not zero.
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Opcode
prefix

Instruction
name

Params Description

11011001 sjzA_Next sjmpNext if acc is zero.

11011010 jnzA_Next jmpNext if acc is not zero.

11011011 jzA_Next jmpNext if acc is zero.

11011100 csjneA_Next_Next sjmpNext if acc and next byte are not equal.

11011101 cjneA_Next_Next jmpNext if acc and next byte are not equal.

11011110 cjneA_Next_D jmpD if acc and next byte are not equal.

11011111 halt Signals the VM to halt.

11100 outR r:3 Outputs the value of a given register.

11101 outDPtr n:3 Outputs next n bytes from where dataPtr

points.

11110 outiDPtr n:3 Outputs next n bytes from where dataPtr

points, and increases dataPtr with n.

11111 outNext n:3 Outputs next n bytes from memory.

Table 7: The instruction set description of the immediate OCI. The parameter mapping rep-
resents name and bit count.
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C.2 The indirect opcode interpreter

Opcode
prefix

Instruction
name

Params Description

00000 movR_DH r:3 Copies high byte of dataPtr into given register.

00001 movDH_R r:3 Copies value of given register into high byte of

dataPtr.

00010 movR_DL r:3 Copies low byte of dataPtr into given register.

00011 movDL_R r:3 Copies value of given register into low byte of

dataPtr.

00100 movR_DPtr r:3 Copies 1 byte from memory where dataPtr

points, into given register.

00101 movDPtr_R r:3 Copies value of given register to the memory

where dataPtr points.

00110 movR_A r:3 Copies acc into given register.

00111 movA_R r:3 Copies given register into acc.

01000 xchA_R r:3 Exchanges values of acc and given register.

01001000 movA_DH Copies high byte of dataPtr into acc.

01001001 movA_DL Copies value of acc into high byte of dataPtr.

01001010 movDH_A Copies low byte of dataPtr into acc.

01001011 movDL_A Copies value of acc into low byte of dataPtr.

01001100 movA_DPtr Copies 1 byte from memory where dataPtr

points, into acc.

01001101 movDPtr_A Copies value of acc to the memory where

dataPtr points.

01001110 cplC Inverts value of carry flag.

01001111 inc_A Increments value of acc.

01010000 dec_A Decrements value of acc.

01010001 inc_D Increments value of dataPtr.

01010010 dec_D Decrements value of dataPtr.

01010011 cplA Inverts value of acc bitwise.

010101 anlA_RPtr rp:2 Performs bitwise and between acc and memory

memory where given register points.

01011 anlA_R r:3 Performs bitwise and between acc and given reg-

ister.

01100 orlA_R r:3 Performs bitwise or between acc and given reg-

ister.

01101 addA_R r:3 Adds value of given register to acc.

01110 addcA_R r:3 Adds value of given register to acc, with carry.

01111 subA_R r:3 Subtracts value of given register from acc.

62



Opcode
prefix

Instruction
name

Params Description

10000 subbA_R r:3 Subtracts value of given register from acc, with

borrow.

100010 orlA_RPtr rp:2 Performs bitwise or between acc and memory

memory where given register points.

10001100 anlA_DPtr Performs bitwise and between acc and memory

where dataPtr points.

10001101 orlA_DPtr Performs bitwise or between acc and memory

where dataPtr points.

10001110 addA_DPtr Adds value of memory where dataPtr points to

acc.

10001111 addcA_DPtr Adds value of memory where dataPtr points to

acc, with carry.

100100 addA_RPtr rp:2 Adds value of memory where given register

points to acc.

100101 addcA_RPtr rp:2 Adds value of memory where given register

points to acc, with carry.

100110 subA_RPtr rp:2 Subtracts value of memory where given register

points from acc.

100111 subbA_RPtr rp:2 Subtracts value of memory where given register

points from acc, with borrow.

10100000 subA_DPtr Subtracts value of memory where dataPtr

points from acc.

10100001 subbA_DPtr Subtracts value of memory where dataPtr

points from acc, with borrow.

10100010 rlA Rotates acc left with 1 bit.

10100011 rrA Rotates acc right with 1 bit.

10100100 rlcA Rotates acc left with 1 bit, using carry flag.

10100101 rrcA Rotates acc right with 1 bit, using carry flag.

10100110 pushDH Pushes high byte of dataPtr to stack.

10100111 popDH Pops high byte of dataPtr from stack.

10101000 pushDL Pushes low byte of dataPtr to stack.

10101001 popDL Pops low byte of dataPtr from stack.

10101010 pushA Pushes value of acc to stack.

10101011 popA Pops value of acc from stack.

101011 pushR r:2 Pushes value of a register to stack.

101100 popR r:2 Pops value of a register from stack.

101101 sjmpR r:2 Short jumps program counter with value of reg-

ister (R0-R3).
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Opcode
prefix

Instruction
name

Params Description

101110 jmpR rp:2 Absolute jumps to memory address given by pair

of registers.

10111100 jmpD Absolute jumps to value of dataPtr.

10111101 callD Pushes program counter, and then jmpD.

10111110 ret Pops program counter from stack.

10111111 jnc_D jmpD if carry bit is not set.

110000 scallR r:2 Pushes program counter, and then sjmpR.

110001 callR rp:2 Pushes program counter, and then jmpR.

11001000 jc_D jmpD if carry bit is set.

11001001 jnzA_D jmpD if acc is not zero.

11001010 jzA_D jmpD if acc is zero.

11001011 halt Signals the VM to halt.

110011 sjnc_R r:2 sjmpR if carry bit is not set.

110100 sjc_R r:2 sjmpR if carry bit is set.

110101 jnc_R rp:2 jmpR if carry bit is not set.

110110 jc_R rp:2 jmpR if carry bit is set.

110111 sjnzA_R r:2 sjmpR if acc is not zero.

111000 sjzA_R r:2 sjmpR if acc is zero.

111001 jnzA_R rp:2 jmpR if acc is not zero.

111010 jzA_R rp:2 jmpR if acc is zero.

111011 outRPtr rp:2 Outputs byte from where a pair of registers is

pointing.

11110 outR r:3 Outputs the value of a given register.

11111 outDPtr n:3 Outputs next n bytes from where dataPtr

points.

Table 8: The instruction set description of the indirect OCI. The parameter mapping repre-
sents name and bit count.
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D Resulting MIDI files

In this section we present some of the models chosen randomly from our results presented in
Section 8. The script performing the selection is included under the name randresults.py.
It uses the following steps:

1. collects the highest scoring models from all test runs (a total of 560 models);

2. only uses the model with an overall grade above or equal to 70% (resulting in 122
models out of 560);

3. chooses 10 models randomly;

4. crops the selected models to a length of 96 ticks (6 bars) with a randomly selected start
tick;

5. outputs the resulting cropped files (attached to current document; see Appendix A).

Figures 27 through 36 show the resulting models together with information about their
associated test run.
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Figure 27: Resulting model from a test run using the indirect OCI, single track corpus, pop
size of 256, cropped from 697 to 793 ticks. This model achieved an overall grade of 0.747.
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Figure 28: Resulting model from a test run using the immediate OCI, single track corpus,
pop size of 512, cropped from 622 to 718 ticks. This model achieved an overall grade of
0.794.
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Figure 29: Resulting model from a test run using the indirect OCI, dual track corpus, pop
size of 1024, cropped from 4 to 100 ticks. This model achieved an overall grade of 0.801.
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Figure 30: Resulting model from a test run using the indirect OCI, dual track corpus, pop
size of 1024, cropped from 543 to 639 ticks. This model achieved an overall grade of 0.874.
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Figure 31: Resulting model from a test run using the immediate OCI, single track corpus,
pop size of 512, cropped from 12 to 108 ticks. This model achieved an overall grade of
0.780.
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Figure 32: Resulting model from a test run using the indirect OCI, dual track corpus, pop
size of 1024, cropped from 121 to 217 ticks. This model achieved an overall grade of 0.771.
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Figure 33: Resulting model from a test run using the immediate OCI, single track corpus,
pop size of 256, cropped from 625 to 721 ticks. This model achieved an overall grade of
0.711.
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Figure 34: Resulting model from a test run using the indirect OCI, single track corpus, pop
size of 64, cropped from 731 to 827 ticks. This model achieved an overall grade of 0.724.
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Figure 35: Resulting model from a test run using the indirect OCI, dual track corpus, pop
size of 256, cropped from 388 to 484 ticks. This model achieved an overall grade of 0.720.
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Figure 36: Resulting model from a test run using the immediate OCI, dual track corpus, pop
size of 1024, cropped from 137 to 233 ticks. This model achieved an overall grade of 0.743.
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